Suppr超能文献

一种改进的近端梯度算法的强收敛性和有界扰动弹性

Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm.

作者信息

Guo Yanni, Cui Wei

机构信息

College of Science, Civil Aviation University of China, Tianjin, China.

出版信息

J Inequal Appl. 2018;2018(1):103. doi: 10.1186/s13660-018-1695-x. Epub 2018 May 2.

Abstract

The proximal gradient algorithm is an appealing approach in finding solutions of non-smooth composite optimization problems, which may only has weak convergence in the infinite-dimensional setting. In this paper, we introduce a modified proximal gradient algorithm with outer perturbations in Hilbert space and prove that the algorithm converges strongly to a solution of the composite optimization problem. We also discuss the bounded perturbation resilience of the basic algorithm of this iterative scheme and illustrate it with an application.

摘要

近端梯度算法是求解非光滑复合优化问题的一种有吸引力的方法,在无限维情形下它可能只有弱收敛性。在本文中,我们在希尔伯特空间中引入一种带外部扰动的修正近端梯度算法,并证明该算法强收敛到复合优化问题的一个解。我们还讨论了这种迭代格式基本算法的有界扰动弹性,并通过一个应用加以说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e46/5932141/eadd2ef5e79e/13660_2018_1695_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验