Suppr超能文献

交互式超声化:探索涌现行为,应用生物信息模型与聆听

Interactive Sonification Exploring Emergent Behavior Applying Models for Biological Information and Listening.

作者信息

Choi Insook

机构信息

Studio for International Media & Technology, MediaCityUK, School of Arts & Media, University of Salford, Manchester, United Kingdom.

出版信息

Front Neurosci. 2018 Apr 27;12:197. doi: 10.3389/fnins.2018.00197. eCollection 2018.

Abstract

Sonification is an open-ended design task to construct sound informing a listener of data. Understanding application context is critical for shaping design requirements for data translation into sound. Sonification requires methodology to maintain reproducibility when data sources exhibit non-linear properties of self-organization and emergent behavior. This research formalizes interactive sonification in an extensible model to support reproducibility when data exhibits emergent behavior. In the absence of sonification theory, extensibility demonstrates relevant methods across case studies. The interactive sonification framework foregrounds three factors: reproducible system implementation for generating sonification; interactive mechanisms enhancing a listener's multisensory observations; and reproducible data from models that characterize emergent behavior. Supramodal attention research suggests interactive exploration with auditory feedback can generate context for recognizing irregular patterns and transient dynamics. The sonification framework provides circular causality as a signal pathway for modeling a listener interacting with emergent behavior. The extensible sonification model adopts a data acquisition pathway to formalize functional symmetry across three subsystems: Experimental Data Source, Sound Generation, and Guided Exploration. To differentiate time criticality and dimensionality of emerging dynamics, are applied between subsystems to maintain scale and symmetry of concurrent processes and temporal dynamics. Tuning functions accommodate sonification design strategies that yield order parameter values to render emerging patterns discoverable as well as , to reproduce desired instances for clinical listeners. Case studies are implemented with two computational models, Chua's circuit and Swarm Chemistry social agent simulation, generating data in real-time that exhibits emergent behavior. is introduced as an informal model of a listener's clinical attention to data sonification through multisensory interaction in a context of structured inquiry. Three methods are introduced to assess the proposed sonification framework: Listening Scenario classification, data flow Attunement, and Sonification Design Patterns to classify sound control. Case study implementations are assessed against these methods comparing levels of abstraction between experimental data and sound generation. Outcomes demonstrate the framework performance as a reference model for representing experimental implementations, also for identifying common sonification structures having different experimental implementations, identifying common functions implemented in different subsystems, and comparing impact of affordances across multiple implementations of listening scenarios.

摘要

可听化是一项开放式设计任务,旨在构建声音以向听众传达数据。了解应用背景对于确定将数据转换为声音的设计要求至关重要。当数据源呈现出自组织和涌现行为的非线性特性时,可听化需要方法论来保持可重复性。本研究在一个可扩展模型中对交互式可听化进行形式化,以在数据呈现涌现行为时支持可重复性。在缺乏可听化理论的情况下,可扩展性展示了跨案例研究的相关方法。交互式可听化框架突出了三个因素:用于生成可听化的可重复系统实现;增强听众多感官观察的交互机制;以及来自表征涌现行为的模型的可重复数据。超模态注意力研究表明,带有听觉反馈的交互式探索可以为识别不规则模式和瞬态动态生成背景。可听化框架提供循环因果关系作为一种信号通路,用于对听众与涌现行为交互进行建模。可扩展的可听化模型采用数据采集路径来形式化三个子系统之间的功能对称性:实验数据源、声音生成和引导探索。为了区分新兴动态的时间关键性和维度,在子系统之间应用了 ,以保持并发过程和时间动态的规模和对称性。调谐函数适应可听化设计策略,这些策略产生序参量值以使新兴模式可被发现,以及 ,为临床听众重现所需实例。案例研究使用两个计算模型进行实现,即蔡氏电路和群体化学社会代理模拟,实时生成呈现涌现行为的数据。 通过在结构化探究背景下的多感官交互,被引入作为听众对数据可听化的临床注意力的非正式模型。引入了三种方法来评估所提出的可听化框架:听力场景分类、数据流协调和可听化设计模式以对声音控制进行分类。针对这些方法评估案例研究实现,比较实验数据和声音生成之间的抽象层次。结果证明了该框架作为表示实验实现的参考模型的性能,也用于识别具有不同实验实现的常见可听化结构,识别在不同子系统中实现的常见功能,以及比较跨多个听力场景实现的可供性的影响。 (注:原文中部分“ ”处内容缺失,无法准确完整翻译)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验