Kim Howon, Palacio-Morales Alexandra, Posske Thore, Rózsa Levente, Palotás Krisztián, Szunyogh László, Thorwart Michael, Wiesendanger Roland
Department of Physics, University of Hamburg, D-20355 Hamburg, Germany.
Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia.
Sci Adv. 2018 May 11;4(5):eaar5251. doi: 10.1126/sciadv.aar5251. eCollection 2018 May.
Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing.
在凝聚态系统中实现马约拉纳束缚态(MBS)是通往拓扑量子计算道路上的一项关键挑战。作为一个有前景的平台,理论预测传统超导体上的一维磁链在链端会存在MBS。我们展示了一种利用单原子操纵技术设计用于研究MBS的模型型原子尺度系统的新方法。我们在Re表面人工构建的原子Fe链表现出自旋螺旋态,并且在零能量处的局域态密度显著增强,且强烈局域在链端。此外,链端的零能量模式随着链长增加而出现并变得稳定。基于从头算计算获得的参数进行的紧束缚模型计算证实该系统处于拓扑相。我们的工作为在原子尺度混合结构中设计MBS开辟了新途径,作为容错拓扑量子计算的基础。