Suppr超能文献

通过吸附原子操控实现电荷密度波控制及其对磁性纳米结构的影响

Charge-Density-Wave Control by Adatom Manipulation and Its Effect on Magnetic Nanostructures.

作者信息

Rütten Lisa M, Liebhaber Eva, Rossnagel Kai, Franke Katharina J

机构信息

Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.

Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.

出版信息

Nano Lett. 2025 Jan 8;25(1):115-120. doi: 10.1021/acs.nanolett.4c04581. Epub 2024 Dec 19.

Abstract

Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states. The transition metal dichalcogenide 2-NbSe hosts both CDW order and superconductivity, with the incommensurate CDW phase resulting in different CDW-to-lattice alignments at the atomic scale. Using scanning tunneling microscopy, we position adatoms on the surface to induce reversible CDW domain switching. We show that the domain structure critically affects other local interactions, particularly the hybridization of Yu-Shiba-Rusinov states, which emerge from exchange interactions of magnetic Fe atoms with the superconductor. Our results suggest that CDW manipulation could also be used to introduce domain walls into coupled spin chains on superconductors, potentially impacting topological superconductivity.

摘要

电荷密度波(CDW)是物质的相关态,其中电子密度由于电子与声子相互作用而发生周期性调制。通常,CDW相与其他相关态共存,如超导态、自旋密度波或莫特绝缘体。因此,控制CDW相可能实现对这些相互作用态的能量景观的操控。过渡金属二硫属化物2-NbSe兼具CDW序和超导性,非 commensurate CDW相在原子尺度上导致不同的CDW与晶格排列。利用扫描隧道显微镜,我们将吸附原子置于表面以诱导可逆的CDW畴切换。我们表明,畴结构对其他局部相互作用有至关重要的影响,特别是由磁性铁原子与超导体的交换相互作用产生的汤浅-芝-鲁西诺夫态的杂化。我们的结果表明,CDW操控也可用于在超导体上的耦合自旋链中引入畴壁,这可能会影响拓扑超导性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验