Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea.
Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
Phys Rev Lett. 2018 Apr 13;120(15):150602. doi: 10.1103/PhysRevLett.120.150602.
In thermodynamics, quantum coherences-superpositions between energy eigenstates-behave in distinctly nonclassical ways. Here we describe how thermodynamic coherence splits into two kinds-"internal" coherence that admits an energetic value in terms of thermodynamic work, and "external" coherence that does not have energetic value, but instead corresponds to the functioning of the system as a quantum clock. For the latter form of coherence, we provide dynamical constraints that relate to quantum metrology and macroscopicity, while for the former, we show that quantum states exist that have finite internal coherence yet with zero deterministic work value. Finally, under minimal thermodynamic assumptions, we establish a clock-work trade-off relation between these two types of coherences. This can be viewed as a form of time-energy conjugate relation within quantum thermodynamics that bounds the total maximum of clock and work resources for a given system.
在热力学中,量子相干——能量本征态之间的叠加——表现出明显的非经典行为。在这里,我们描述了热力学相干如何分裂成两种类型——“内部”相干,它可以用热力学功的术语来表示能量值,以及“外部”相干,它没有能量值,但对应于系统作为量子钟的功能。对于后一种形式的相干,我们提供了与量子计量学和宏观性相关的动力学约束,而对于前一种形式,我们表明存在具有有限内部相干但具有零确定性功值的量子态。最后,在最小热力学假设下,我们在这两种类型的相干之间建立了一个钟功交换关系。这可以看作是量子热力学中一种时间-能量共轭关系的形式,它限制了给定系统的钟和功资源的总最大值。