Department of Mathematics and Statistics, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Nat Commun. 2018 Dec 17;9(1):5352. doi: 10.1038/s41467-018-06261-7.
What does it mean for one quantum process to be more disordered than another? Interestingly, this apparently abstract question arises naturally in a wide range of areas such as information theory, thermodynamics, quantum reference frames, and the resource theory of asymmetry. Here we use a quantum-mechanical generalization of majorization to develop a framework for answering this question, in terms of single-shot entropies, or equivalently, in terms of semi-definite programs. We also investigate some of the applications of this framework, and remarkably find that, in the context of quantum thermodynamics it provides the first complete set of necessary and sufficient conditions for arbitrary quantum state transformations under thermodynamic processes, which rigorously accounts for quantum-mechanical properties, such as coherence. Our framework of generalized thermal processes extends thermal operations, and is based on natural physical principles, namely, energy conservation, the existence of equilibrium states, and the requirement that quantum coherence be accounted for thermodynamically.
一个量子过程比另一个过程更无序意味着什么?有趣的是,这个看似抽象的问题自然会出现在信息论、热力学、量子参考系和非对称性资源理论等广泛领域中。在这里,我们使用占优的量子力学推广来开发一个框架,根据单次熵来回答这个问题,或者等效地,根据半定规划来回答这个问题。我们还研究了这个框架的一些应用,令人惊讶的是,在量子热力学的背景下,它为任意量子态转换在热力学过程下提供了第一个完整的必要和充分条件集,这严格考虑了量子力学的特性,如相干性。我们的广义热过程框架扩展了热操作,并且基于自然物理原理,即能量守恒、平衡态的存在以及要求量子相干性在热力学上得到考虑。