Suppr超能文献

短链半刚性硬聚合物熔体中的结晶:熵和维度的相互作用。

Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions.

机构信息

Institute of Physics, Martin-Luther-University, 06099 Halle, Germany.

出版信息

Phys Rev E. 2018 Apr;97(4-1):042501. doi: 10.1103/PhysRevE.97.042501.

Abstract

What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.

摘要

熔体中非柔性聚合物结晶的热力学驱动力是什么?我们尝试通过随机逼近蒙特卡罗模拟来回答这个问题,以获得具有纯粹排斥非键相互作用的短链非柔性聚合物熔体的完整热力学平衡信息。我们的热力学是基于我们的粗粒化模型的态密度得出的,其变化幅度高达 5600 个数量级。我们表明,随着链刚性的增加,我们的聚合物熔体在固定密度下经历了一级结晶转变。这种结晶可以通过不同空间维度中不同熵贡献的最大化相互作用来理解。在足够的刚性和密度下,三维取向相互作用导致取向有序转变,伴随着垂直于链的平面中的二维平移有序转变,导致形成六方晶体结构。虽然三维有序可以用 Onsager 理论来理解,但二维转变可以用硬磁盘的液体-六方转变来理解。由于与柱状位移相关的一维平移熵与侧向二维平移熵相比占主导地位,链形成层状相。基于这种物理理解,聚合物熔体中的取向有序和平移有序应该是可分离的。基于这种理解的唯象理论预测了一个定性的相图,作为体积分数和刚度的函数,与文献中的结果非常吻合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验