Suppr超能文献

自回避随机游走作为研究极端平板约束下无热线性聚合物的模型。

Self-Avoiding Random Walks as a Model to Study Athermal Linear Polymers under Extreme Plate Confinement.

作者信息

Parreño Oscar, Ramos Pablo Miguel, Karayiannis Nikos Ch, Laso Manuel

机构信息

Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain.

出版信息

Polymers (Basel). 2020 Apr 3;12(4):799. doi: 10.3390/polym12040799.

Abstract

Monte Carlo (MC) simulations, built around chain-connectivity-altering moves and a wall-displacement algorithm, allow us to simulate freely-jointed chains of tangent hard spheres of uniform size under extreme confinement. The latter is realized through the presence of two impenetrable, flat, and parallel plates. Extreme conditions correspond to the case where the distance between the plates approaches the monomer size. An analysis of the local structure, based on the characteristic crystallographic element (CCE) norm, detects crystal nucleation and growth at packing densities well below the ones observed in bulk analogs. In a second step, we map the confined polymer chains into self-avoiding random walks (SAWs) on restricted lattices. We study all realizations of the cubic crystal system: simple, body centered, and face centered cubic crystals. For a given chain size (SAW length), lattice type, origin of SAW, and level of confinement, we enumerate all possible SAWs (equivalently all chain conformations) and calculate the size distribution. Results for intermediate SAW lengths are used to predict the behavior of long, fully entangled chains through growth formulas. The SAW analysis will allow us to determine the corresponding configurational entropy, as it is the driving force for the observed phase transition and the determining factor for the thermodynamic stability of the corresponding crystal morphologies.

摘要

蒙特卡罗(MC)模拟基于改变链连接性的移动和壁位移算法,使我们能够在极端受限条件下模拟大小均匀的相切硬球自由连接链。这是通过两个不可穿透、平坦且平行的平板来实现的。极端条件对应于平板之间的距离接近单体尺寸的情况。基于特征晶体学元素(CCE)范数对局部结构进行分析,发现在堆积密度远低于本体类似物中观察到的密度时就会出现晶体成核和生长。第二步,我们将受限聚合物链映射到受限晶格上的自回避随机游走(SAW)。我们研究立方晶体系统的所有变体:简单立方、体心立方和面心立方晶体。对于给定的链尺寸(SAW长度)、晶格类型、SAW起点和受限程度,我们枚举所有可能的SAW(等效于所有链构象)并计算尺寸分布。通过生长公式,利用中等SAW长度的结果来预测长的、完全缠结链的行为。SAW分析将使我们能够确定相应的构型熵,因为它是观察到的相变的驱动力以及相应晶体形态热力学稳定性的决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a59/7240602/652e06454f66/polymers-12-00799-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验