Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China.
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, People's Republic of China.
Phys Rev E. 2018 Apr;97(4-1):043108. doi: 10.1103/PhysRevE.97.043108.
The statistics and scaling of compressible isotropic turbulence in the presence of large-scale shock waves are investigated by using numerical simulations at turbulent Mach number M_{t} ranging from 0.30 to 0.65. The spectra of the compressible velocity component, density, pressure, and temperature exhibit a k^{-2} scaling at different turbulent Mach numbers. The scaling exponents for structure functions of the compressible velocity component and thermodynamic variables are close to 1 at high orders n≥3. The probability density functions of increments of the compressible velocity component and thermodynamic variables exhibit a power-law region with the exponent -2. Models for the conditional average of increments of the compressible velocity component and thermodynamic variables are developed based on the ideal shock relations and are verified by numerical simulations. The overall statistics of the compressible velocity component and thermodynamic variables are similar to one another at different turbulent Mach numbers. It is shown that the effect of shock waves on the compressible velocity spectrum and kinetic energy transfer is different from that of acoustic waves.
在存在大尺度激波的情况下,通过在湍流马赫数 M_t 从 0.30 到 0.65 的范围内进行数值模拟,研究了可压缩各向同性湍流的统计和标度。可压缩速度分量、密度、压力和温度的谱在不同的湍流马赫数下呈现出 k^{-2}的标度。在高阶 n≥3 时,可压缩速度分量和热力学变量的结构函数的标度指数接近 1。可压缩速度分量和热力学变量增量的概率密度函数呈现出幂律区域,指数为-2。基于理想激波关系,为可压缩速度分量和热力学变量的增量的条件平均值建立了模型,并通过数值模拟进行了验证。在不同的湍流马赫数下,可压缩速度分量和热力学变量的整体统计特征相似。结果表明,激波对可压缩速度谱和动能传递的影响不同于声波。