Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
Phys Rev E. 2018 Apr;97(4-1):043105. doi: 10.1103/PhysRevE.97.043105.
We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and separated from the surrounding gas phase by a deformable free surface. Considering a nonmonotonic variation of surface tension with temperature, here we analytically derive the neutral stability curve for the monotonic and oscillatory modes of instability (for both the long-wave and short-wave perturbations) under the framework of linear stability analysis. For the long-wave instability, we derive a set of amplitude equations using the scaling k∼(Bi)^{1/2}, where k is the wave number and Bi is the Biot number. Through this investigation, we demonstrate that for such a fluid layer upon heating from below, both monotonic and oscillatory instability can appear for a certain range of the dimensionless parameters, viz., Biot number (Bi), Galileo number (Ga), and inverse capillary number (Σ). Moreover, we unveil, through this study, the influential role of the above-mentioned parameters on the stability of the system and identify the critical values of these parameters above which instability initiates in the liquid layer.
我们研究了在热导率较低的基底上的薄液膜中的 Marangoni 不稳定性,该液膜与周围气相通过可变形的自由表面隔开。考虑到表面张力随温度的非单调变化,我们在此通过线性稳定性分析的框架,针对单调和振荡不稳定性(长波及短波扰动),解析地推导出中性稳定性曲线。对于长波不稳定性,我们通过缩放 k∼(Bi)^{1/2},其中 k 是波数,Bi 是 Biot 数,推导出了一组振幅方程。通过这项研究,我们证明了对于这样的流体层,在从下方加热时,在一定的无量纲参数范围内,既可以出现单调不稳定性,也可以出现振荡不稳定性,这些参数包括 Biot 数 (Bi)、Galileo 数 (Ga) 和逆毛细数 (Σ)。此外,通过这项研究,我们揭示了上述参数对系统稳定性的影响作用,并确定了这些参数的临界值,超过该值后,液体层就会开始出现不稳定性。