Division of Physics, Hokkaido University, Sapporo 060-0810, Japan.
Phys Rev E. 2018 Apr;97(4-1):042212. doi: 10.1103/PhysRevE.97.042212.
Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.
在连续极限下,非局部耦合相振子的一维阵列的嵌合体状态在大多数研究中被假设为稳定状态,但也有一些研究报告了呼吸嵌合体状态的存在。我们关注具有两个相干和非相干区域的多嵌合体状态,并通过数值方法证明了呼吸多嵌合体状态的存在,其全局序参量随时间振荡。此外,我们通过对稳定多嵌合体的线性稳定性分析表明,系统从稳定多嵌合体到呼吸多嵌合体发生了Hopf 分岔。