Suppr超能文献

自推进弹道颗粒的相分离。

Phase separation of self-propelled ballistic particles.

机构信息

Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Phys Rev E. 2018 Apr;97(4-1):042609. doi: 10.1103/PhysRevE.97.042609.

Abstract

Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τ_{F}, the mean time particles spend between collisions; and τ_{C}, the mean lifetime of a collision. We show that only when τ_{F}<τ_{C} do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.

摘要

自推进粒子在超过临界密度时会分离成共存的密集和稀疏区域。它们随机运动的统计性质使其适合于各种预测相分离开始的理论。然而,当噪声变得可以忽略不计时,这些理论就无法描述这种行为。为了克服这一限制,我们提出了一个依赖于两个密度相关时间尺度的预测模型:τ_{F},粒子在两次碰撞之间花费的平均时间;以及 τ_{C},一次碰撞的平均寿命。我们表明,只有当 τ_{F}<τ_{C}时,碰撞才会持续足够长的时间来形成一个不断增长的簇并引发相分离。我们使用分析计算和主动粒子模拟来测量这些时间尺度,并确定二维和三维中相分离的临界密度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验