Instituto de Física, UFRGS, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
Phys Rev E. 2018 Apr;97(4-1):042221. doi: 10.1103/PhysRevE.97.042221.
We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system-in which planets have masses comparable to those of planets in the solar system-the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.
我们表明,行星系统的稳定性与其内部秩序密切相关。行星的任意初始分布都容易发生灾难性事件,在这些事件中,行星要么碰撞,要么被逐出行星系统。这些不稳定性是混沌动力学和许多体引力相互作用的阿诺德扩散的基本结果。为了确保在天文时间尺度上,一个具有与太阳系中行星相当质量的实际行星系统的稳定性,运动必须是准周期的。提出了一种动力学机制,该机制可以从任意初始条件自然地将行星系统演化到准周期状态。该理论预测的行星自组织类似于我们太阳系中发现的自组织。