Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
Phys Rev E. 2018 Apr;97(4-1):040103. doi: 10.1103/PhysRevE.97.040103.
We study height fluctuations of interfaces in the (1+1)-dimensional Kardar-Parisi-Zhang (KPZ) class, growing at different speeds in the left half and the right half of space. Carrying out simulations of the discrete polynuclear growth model with two different growth rates, combined with the standard setting for the droplet, flat, and stationary geometries, we find that the fluctuation properties at and near the boundary are described by the KPZ half-space problem developed in the theoretical literature. In particular, in the droplet case, the distribution at the boundary is given by the largest-eigenvalue distribution of random matrices in the Gaussian symplectic ensemble, often called the GSE Tracy-Widom distribution. We also characterize crossover from the full-space statistics to the half-space one, which arises when the difference between the two growth speeds is small.
我们研究了在(1+1)维 Kardar-Parisi-Zhang(KPZ)类中界面的高度波动,其在空间的左半部分和右半部分以不同的速度生长。通过对具有两种不同生长速率的离散多核生长模型进行模拟,并结合液滴、平面和稳定几何形状的标准设置,我们发现边界处和附近的波动特性由理论文献中开发的 KPZ 半空间问题描述。特别是在液滴情况下,边界处的分布由随机矩阵在高斯辛 ensemble 中的最大特征值分布给出,通常称为 GSE Tracy-Widom 分布。我们还描述了当两种生长速度之间的差异较小时,从全空间统计到半空间统计的交叉。