Suppr超能文献

一维 Kardar-Parisi-Zhang 方程:精确解及其普适性。

One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality.

机构信息

Department of Mathematics and Informatics, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan.

出版信息

Phys Rev Lett. 2010 Jun 11;104(23):230602. doi: 10.1103/PhysRevLett.104.230602.

Abstract

We report on the first exact solution of the Kardar-Parisi-Zhang (KPZ) equation in one dimension, with an initial condition which physically corresponds to the motion of a macroscopically curved height profile. The solution provides a determinantal formula for the probability distribution function of the height h(x,t) for all t>0. In particular, we show that for large t, on the scale t(1/3), the statistics is given by the Tracy-Widom distribution, known already from the Gaussian unitary ensemble of random matrix theory. Our solution confirms that the KPZ equation describes the interface motion in the regime of weak driving force. Within this regime the KPZ equation details how the long time asymptotics is approached.

摘要

我们报告了一维卡达尔-帕里西-张(KPZ)方程的第一个精确解,其初始条件在物理上对应于宏观弯曲高度轮廓的运动。该解为高度 h(x,t)的概率分布函数提供了一个行列式公式,适用于所有 t>0。特别是,我们表明对于大的 t,在 t(1/3)的尺度上,统计量由 Tracy-Widom 分布给出,这已经从随机矩阵理论的高斯酉系综中得知。我们的解证实了 KPZ 方程描述了弱驱动力下的界面运动。在这个范围内,KPZ 方程详细描述了如何接近长时间渐近。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验