Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and.
BioEnterprise, Cleveland, Ohio 44106.
J Neurosci. 2018 Jun 6;38(23):5399-5414. doi: 10.1523/JNEUROSCI.3214-17.2018. Epub 2018 May 14.
Severed axon tips reform growth cones following spinal cord injury that fail to regenerate, in part, because they become embedded within an inhibitory extracellular matrix. Chondroitin sulfate proteoglycans (CSPGs) are the major axon inhibitory matrix component that is increased within the lesion scar and in perineuronal nets around deafferented neurons. We have recently developed a novel peptide modulator (intracellular sigma peptide) of the cognate receptor of CSPGs, protein tyrosine phosphatase σ (RPTPσ), which has been shown to markedly improve sensorimotor function, micturition, and coordinated locomotor behavior in spinal cord contused rats. However, the mechanism(s) underlying how modulation of RPTPσ mediates axon outgrowth through inhibitory CSPGs remain unclear. Here, we describe how intracellular sigma peptide modulation of RPTPσ induces enhanced protease Cathepsin B activity. Using DRG neurons from female Sprague Dawley rats cultured on an aggrecan/laminin spot assay and a combination of biochemical techniques, we provide evidence suggesting that modulation of RPTPσ regulates secretion of proteases that, in turn, relieves CSPG inhibition through its digestion to allow axon migration though proteoglycan barriers. Understanding the mechanisms underlying RPTPσ modulation elucidates how axon regeneration is impaired by proteoglycans but can then be facilitated following injury. Following spinal cord injury, chondroitin sulfate proteoglycans (CSPGs) upregulate and potently inhibit axon regeneration and functional recovery. Protein tyrosine phosphatase σ (RPTPσ) has been identified as a critical cognate receptor of CSPGs. We have previously characterized a synthetic peptide (intracellular sigma peptide) that targets the regulatory intracellular domain of the receptor to allow axons to regenerate despite the presence of CSPGs. Here, we have found that one important mechanism by which peptide modulation of the receptor enhances axon outgrowth is through secretion of a protease, Cathepsin B, which enables digestion of CSPGs. This work links protease secretion to the CSPG receptor RPTPσ for the first time with implications for understanding the molecular mechanisms underlying neural regeneration and plasticity.
轴突末端在脊髓损伤后会重新形成生长锥,但无法再生,部分原因是它们嵌入了抑制性细胞外基质中。软骨素硫酸盐蛋白聚糖 (CSPGs) 是主要的轴突抑制性基质成分,在损伤瘢痕内和去神经神经元周围的神经周细胞网络中增加。我们最近开发了一种 CSPGs 同源受体的新型肽调节剂(细胞内西格玛肽),蛋白酪氨酸磷酸酶 σ (RPTPσ),已证明它可显著改善脊髓挫伤大鼠的感觉运动功能、排尿和协调的运动行为。然而,调节 RPTPσ 如何通过抑制性 CSPGs 介导轴突生长的机制尚不清楚。在这里,我们描述了细胞内西格玛肽对 RPTPσ 的调节如何诱导增强的蛋白酶组织蛋白酶 B 活性。使用雌性 Sprague Dawley 大鼠的背根神经节神经元在聚集蛋白/层粘连蛋白斑点测定和生化技术的组合上进行培养,我们提供了证据表明,RPTPσ 的调节调节蛋白酶的分泌,反过来,通过消化 CSPG 来缓解其抑制作用,从而允许轴突通过蛋白聚糖屏障迁移。了解 RPTPσ 调节的机制阐明了轴突再生如何被蛋白聚糖损害,但随后可以在损伤后得到促进。脊髓损伤后,软骨素硫酸盐蛋白聚糖 (CSPGs) 上调并强烈抑制轴突再生和功能恢复。蛋白酪氨酸磷酸酶 σ (RPTPσ) 已被确定为 CSPGs 的关键同源受体。我们之前已经描述了一种合成肽(细胞内西格玛肽),该肽靶向受体的调节细胞内结构域,允许轴突在存在 CSPGs 的情况下再生。在这里,我们发现,肽调节受体增强轴突生长的一个重要机制是通过分泌一种蛋白酶组织蛋白酶 B,这使得 CSPGs 能够被消化。这项工作首次将蛋白酶分泌与 CSPG 受体 RPTPσ 联系起来,对理解神经再生和可塑性的分子机制具有重要意义。
Exp Neurol. 2013-4-12
Discov Oncol. 2025-5-9
Neuroreport. 2025-4-2
Neurobiol Stress. 2024-11-14
RSC Med Chem. 2023-8-14
Front Mol Neurosci. 2023-8-17
Physiol Rev. 2018-4-1
Nat Rev Cancer. 2015-12
Proc Natl Acad Sci U S A. 2015-2-10