Suppr超能文献

用于生成基于高分辨率液相色谱-质谱联用的参考质谱图库的完整流程

A Complete Pipeline for Generating a High-Resolution LC-MS-Based Reference Mass Spectra Library.

作者信息

Shahaf Nir, Aharoni Asaph, Rogachev Ilana

机构信息

Department of Plant and Environmental Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Methods Mol Biol. 2018;1778:193-206. doi: 10.1007/978-1-4939-7819-9_14.

Abstract

Databases containing mass spectrometry (MS) spectral data (i.e., MS reference libraries) are currently the most reliable and widely accepted approach to annotate unknown features in MS-based metabolomics. While for gas chromatography (GC)-MS data, a strategy for collecting, storing, and comparing to raw data has been established, this is not the case for liquid chromatography (LC)-MS data. Here, we present our approach for high-throughput data collection and automated MS reference library generation, as applied recently in the WEIZMASS library of plant metabolites. Methodologies to experimentally generate pools of chemical standards and computationally convert them into a unique source of reference data are detailed.

摘要

包含质谱(MS)光谱数据的数据库(即MS参考库)是目前基于MS的代谢组学中注释未知特征最可靠且被广泛接受的方法。虽然对于气相色谱(GC)-MS数据,已经建立了一种收集、存储和与原始数据进行比较的策略,但液相色谱(LC)-MS数据并非如此。在此,我们介绍我们的高通量数据收集和自动生成MS参考库的方法,该方法最近已应用于植物代谢物的WEIZMASS库中。详细阐述了通过实验生成化学标准品池并通过计算将其转化为独特参考数据源的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验