Suppr超能文献

具有“给体-受体结合π桥”的非富勒烯受体用于具有大开路电压的有机光伏

Nonfullerene Acceptor with "Donor-Acceptor Combined π-Bridge" for Organic Photovoltaics with Large Open-Circuit Voltage.

机构信息

Hubei Key Laboratory on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China.

Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China.

出版信息

ACS Appl Mater Interfaces. 2018 Jun 6;10(22):18984-18992. doi: 10.1021/acsami.8b04541. Epub 2018 May 25.

Abstract

In this work, a kind of "donor-acceptor (D-A) combined π-bridge" based on the regioselective reactivity of monofluoro-substituted benzothiadiazole (FBT) to link a thiophene ring has been designed to construct a new A-π-D-π-A-type small molecular acceptor (IDT-FBTR) with indacenodithiophene (IDT) as a central core (D) and 3-octyl-2-(1,1-dicyanomethylene)rhodanine as an electron-withdrawing terminal group (A). Because of the strong intramolecular push-pull electron effect, the IDT-FBTR shows a strong and broad intramolecular charge-transfer absorption band in the range of 500-750 nm. Especially, as an electron-deficient FBT unit (A') and an electron-rich thiophene ring (D') in "D-A combined π-bridge" exert an "offset effect" to regulate the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy levels of the molecule, a relatively high LUMO energy level can be maintained for IDT-FBTR that is helpful to enhance the open-circuit voltage ( V) for highly efficient organic solar cells (OSCs). Therefore, the optimized OSC device based on IDT-FBTR as the acceptor and PTB7-Th as the donor shows a much high V of 1.02 V with a relatively low E of 0.56 eV and a best power conversion efficiency of 9.14%.

摘要

在这项工作中,设计了一种基于单氟取代苯并噻二唑(FBT)区域选择性反应的“给体-受体(D-A)组合π-桥”,将噻吩环连接起来,构建了一种以茚并二噻吩(IDT)为中心核(D)和 3-辛基-2-(1,1-二氰基亚甲基)罗丹宁为电子受主基团(A)的新型 A-π-D-π-A 型小分子受体(IDT-FBTR)。由于强烈的分子内推拉电子效应,IDT-FBTR 在 500-750nm 范围内表现出强而宽的分子内电荷转移吸收带。特别是,作为缺电子 FBT 单元(A')和富电子噻吩环(D')在“D-A 组合 π-桥”中发挥“抵消效应”,调节分子的最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)能级,IDT-FBTR 可以保持较高的 LUMO 能级,有助于提高高效有机太阳能电池(OSC)的开路电压(V)。因此,基于 IDT-FBTR 作为受体和 PTB7-Th 作为供体的优化 OSC 器件表现出 1.02V 的高 V,0.56eV 的相对低 E 和 9.14%的最佳功率转换效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验