Chutia Tridip, Kalita Dhruba Jyoti
Department of Chemistry, Gauhati University Guwahati-781014 India
RSC Adv. 2022 May 12;12(23):14422-14434. doi: 10.1039/d2ra01820a.
In this work we have theoretically investigated the optoelectronic properties of a series of acceptor-donor-acceptor type molecules by employing density functional theory formalism. We have used 1,1-dicyano-methylene-3-indanone as the acceptor unit and a fused -methyl-dithieno-pyrrole as the donor unit. We have calculated the values of dihedral angle, inter-ring bond length, bond length alteration parameters, HOMO-LUMO gap, ionization potential, electron affinity, partial density of states, reorganization energies for holes and electrons, charge transfer rate for holes and electrons of the seven types of compounds designed molecular engineering. Calculated IP and EA values manifest that PBDB-C2 shows excellent charge transportation compared to others. Absorption spectra of the designed compounds have been studied using the time-dependent density functional theory method. From the calculation of reorganization energy it is confirmed that our designed molecules behave more likely as donor materials. Our calculated results also reveal that compounds with electron donating substituents at the acceptor units show higher value of . Absorption spectra of donor/acceptor blends show similar trends with the isolated compounds. Observed lower exciton binding energy values for all the compounds indicate facile charge carrier separation at the donor/acceptor interface. Moreover, the negative values of Gibb's free energy change also indicate the ease of exciton dissociation of all the designed compounds. The photovoltaic characteristics of the studied compounds infer that all the designed compounds have the potential to become suitable candidate for the fabrication of organic semiconductors. However, PBDB-C2 and PBDB-C4 with the highest PCE of 18.25% can become the best candidate for application in photovoltaics.
在这项工作中,我们采用密度泛函理论形式,从理论上研究了一系列给体-受体-给体型分子的光电性质。我们使用1,1-二氰基亚甲基-3-茚满酮作为受体单元,稠合的甲基二噻吩并吡咯作为给体单元。我们计算了七种通过分子工程设计的化合物的二面角、环间键长、键长改变参数、最高占据分子轨道-最低未占据分子轨道能隙、电离势、电子亲和势、态密度分布、空穴和电子的重组能、空穴和电子的电荷转移速率。计算得到的电离势和电子亲和势值表明,与其他化合物相比,PBDB-C2表现出优异的电荷传输性能。我们使用含时密度泛函理论方法研究了设计化合物的吸收光谱。通过重组能的计算证实,我们设计的分子更有可能表现为给体材料。我们的计算结果还表明,在受体单元带有供电子取代基的化合物具有更高的[具体参数未给出]值。给体/受体共混物的吸收光谱与孤立化合物呈现相似趋势。观察到所有化合物的激子结合能值较低,表明在给体/受体界面电荷载流子易于分离。此外,吉布斯自由能变化的负值也表明所有设计化合物的激子解离容易。所研究化合物的光伏特性表明,所有设计化合物都有潜力成为制造有机半导体的合适候选材料。然而,具有18.25%最高功率转换效率的PBDB-C2和PBDB-C4可成为光伏应用的最佳候选材料。