Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
Nucleic Acids Res. 2018 Jul 27;46(13):6761-6772. doi: 10.1093/nar/gky364.
(6-4) Photolyases ((6-4)PLs) are flavoenzymes that repair the carcinogenic UV-induced DNA damage, pyrimidine(6-4)pyrimidone photoproducts ((6-4)PPs), in a light-dependent manner. Although the reaction mechanism of DNA photorepair by (6-4)PLs has been intensively investigated, the molecular mechanism of the lesion recognition remains obscure. We show that a well-conserved arginine residue in Xenopus laevis (6-4)PL (Xl64) participates in DNA binding, through Coulomb and CH-π interactions. Fragment molecular orbital calculations estimated attractive interaction energies of -80-100 kcal mol-1 for the Coulomb interaction and -6 kcal mol-1 for the CH-π interaction, and the loss of either of them significantly reduced the affinity for (6-4)PP-containing oligonucleotides, as well as the quantum yield of DNA photorepair. From experimental and theoretical observations, we formulated a DNA binding model of (6-4)PLs. Based on the binding model, we mutated this Arg in Xl64 to His, which is well conserved among the animal cryptochromes (CRYs), and found that the CRY-type mutant exhibited reduced affinity for the (6-4)PP-containing oligonucleotides, implying the possible molecular origin of the functional diversity of the photolyase/cryptochrome superfamily.
(6-4)光解酶((6-4)PLs)是一类黄素酶,能够以光依赖的方式修复致癌的 UV 诱导的 DNA 损伤,即嘧啶(6-4)嘧啶酮光产物((6-4)PPs)。尽管(6-4)PLs 修复 DNA 的反应机制已被深入研究,但损伤识别的分子机制仍不清楚。我们发现,非洲爪蟾(Xenopus laevis)(6-4)PL(Xl64)中一个高度保守的精氨酸残基通过库仑和 CH-π 相互作用参与 DNA 结合。片段分子轨道计算估计库仑相互作用的吸引相互作用能为-80-100 kcal/mol,CH-π 相互作用的吸引相互作用能为-6 kcal/mol,失去其中任何一个都会显著降低与含有(6-4)PP 的寡核苷酸的亲和力,以及 DNA 光修复的量子产率。根据实验和理论观察,我们提出了(6-4)PLs 的 DNA 结合模型。基于该结合模型,我们将 Xl64 中的该 Arg 突变为 His,这在动物隐色体(CRYs)中是高度保守的,并且发现 CRY 型突变体与含有(6-4)PP 的寡核苷酸的亲和力降低,这暗示了光解酶/隐色体超家族功能多样性的可能分子起源。