Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA; Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA; Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
Arch Biochem Biophys. 2018 Jul 15;650:30-38. doi: 10.1016/j.abb.2018.05.014. Epub 2018 May 17.
Information about the molecular mechanisms leading to the activation of the osteoclast is relatively limited. While there is compelling evidence that the signaling mechanisms of Src and integrin β are essential for osteoclast activation, the regulation of these two signaling mechanisms is not fully understood. In this review, evidence supporting a novel regulatory axis of osteoclast activation that plays an upstream regulatory role in both the Src and integrin β signaling during osteoclast activation is discussed. This regulatory axis contains three unique components: a structurally unique transmembrane protein-tyrosine phosphatase, PTP-oc, EphA4, and miR17. In the first component, PTP-oc activates the Src signaling through dephosphorylation of the inhibitory tyr-527 of Src. This in turn activates the integrin β signaling, enhances the JNK2/NFκB signaling, promotes the ITAM/Syk signaling, and suppresses the ITIM/Shp1 signaling; the consequence of which is activation of the osteoclast. In the second component, EphA4 inhibits osteoclast activity by suppressing the integrin β signaling. PTP-oc relieves the suppressive actions of EphA4 by directly dephosphorylating EphA4. In the third component, PTP-oc expression is negatively regulated by miR17. Accordingly, suppression of miR17 during osteoclast activation upregulates the PTP-oc signaling and suppresses the EphA4 signaling, resulting in the activation of the osteoclast. This regulatory axis is unique, in that each of the three components acts to exert suppressive action on their respective immediate downstream inhibitory step. Because the final downstream event is the EphA4-mediated inhibition of osteoclast activation, the overall effect of this mechanism is the stimulation of osteoclast activity.
关于导致破骨细胞激活的分子机制的信息相对有限。虽然有令人信服的证据表明Src 和整合素 β 的信号机制对于破骨细胞的激活是必不可少的,但这两种信号机制的调节尚未完全了解。在这篇综述中,讨论了支持破骨细胞激活的新调节轴的证据,该调节轴在破骨细胞激活过程中Src 和整合素 β 信号的上游调节中发挥作用。这个调节轴包含三个独特的组成部分:一种结构独特的跨膜蛋白酪氨酸磷酸酶、PTP-oc、EphA4 和 miR17。在第一个组成部分中,PTP-oc 通过去磷酸化Src 的抑制性 tyr-527 来激活Src 信号。这反过来又激活了整合素 β 信号,增强了 JNK2/NFκB 信号,促进了 ITAM/Syk 信号,并抑制了 ITIM/Shp1 信号;其结果是破骨细胞的激活。在第二个组成部分中,EphA4 通过抑制整合素 β 信号来抑制破骨细胞的活性。PTP-oc 通过直接去磷酸化 EphA4 来解除 EphA4 的抑制作用。在第三个组成部分中,PTP-oc 的表达受 miR17 的负调控。因此,在破骨细胞激活过程中抑制 miR17 上调了 PTP-oc 信号并抑制了 EphA4 信号,导致破骨细胞的激活。这个调节轴是独特的,因为三个组成部分中的每一个都作用于它们各自的直接下游抑制步骤,以发挥抑制作用。由于最终的下游事件是 EphA4 介导的对破骨细胞激活的抑制,因此该机制的总体效果是刺激破骨细胞的活性。