Suppr超能文献

缓解期双相情感障碍患者的情绪过度反应与心血管代谢风险:一种机器学习方法。

Emotional hyper-reactivity and cardiometabolic risk in remitted bipolar patients: a machine learning approach.

机构信息

Institut Pasteur, Unité Perception et Mémoire, Paris, France.

Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Paris, France.

出版信息

Acta Psychiatr Scand. 2018 Oct;138(4):348-359. doi: 10.1111/acps.12901. Epub 2018 May 15.

Abstract

OBJECTIVE

Remitted bipolar disorder (BD) patients frequently present with chronic mood instability and emotional hyper-reactivity, associated with poor psychosocial functioning and low-grade inflammation. We investigated emotional hyper-reactivity as a dimension for characterization of remitted BD patients, and clinical and biological factors for identifying those with and without emotional hyper-reactivity.

METHOD

A total of 635 adult remitted BD patients, evaluated in the French Network of Bipolar Expert Centers from 2010-2015, were assessed for emotional reactivity using the Multidimensional Assessment of Thymic States. Machine learning algorithms were used on clinical and biological variables to enhance characterization of patients.

RESULTS

After adjustment, patients with emotional hyper-reactivity (n = 306) had significantly higher levels of systolic and diastolic blood pressure (P < 1.0 × 10 ), high-sensitivity C-reactive protein (P < 1.0 × 10 ), fasting glucose (P < 2.23 × 10 ), glycated hemoglobin (P = 0.0008) and suicide attempts (P = 1.4 × 10 ). Using models of combined clinical and biological factors for distinguishing BD patients with and without emotional hyper-reactivity, the strongest predictors were: systolic and diastolic blood pressure, fasting glucose, C-reactive protein and number of suicide attempts. This predictive model identified patients with emotional hyper-reactivity with 84.9% accuracy.

CONCLUSION

The assessment of emotional hyper-reactivity in remitted BD patients is clinically relevant, particularly for identifying those at higher risk of cardiometabolic dysfunction, chronic inflammation, and suicide.

摘要

目的

缓解期双相障碍(BD)患者常表现为慢性情绪不稳定和情绪过度反应,伴有较差的社会心理功能和低度炎症。我们研究了情绪过度反应作为缓解期 BD 患者特征的一个维度,以及识别具有和不具有情绪过度反应的患者的临床和生物学因素。

方法

2010 年至 2015 年,我们对来自法国双相情感障碍专家网络的 635 名成年缓解期 BD 患者进行了情绪反应评估,使用多维胸腺状态评估量表进行评估。使用机器学习算法对临床和生物学变量进行分析,以增强对患者的特征描述。

结果

调整后,情绪过度反应患者(n=306)的收缩压和舒张压(P<1.0×10)、高敏 C 反应蛋白(P<1.0×10)、空腹血糖(P<2.23×10)、糖化血红蛋白(P=0.0008)和自杀企图(P=1.4×10)显著升高。使用综合临床和生物学因素的模型来区分具有和不具有情绪过度反应的 BD 患者,最强的预测因子是:收缩压和舒张压、空腹血糖、C 反应蛋白和自杀企图次数。该预测模型对具有情绪过度反应的患者的识别准确率为 84.9%。

结论

在缓解期 BD 患者中评估情绪过度反应具有临床意义,特别是对识别那些存在更高的心血管代谢功能障碍、慢性炎症和自杀风险的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验