Mondal Ritwik, Berritta Marco, Oppeneer Peter M
J Phys Condens Matter. 2018 Jul 4;30(26):265801. doi: 10.1088/1361-648X/aac5a2. Epub 2018 May 17.
The phenomenological Landau-Lifshitz-Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy-Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.
现象学的朗道-栗弗席兹-吉尔伯特(LLG)运动方程仍然是当代磁化动力学研究的基石,其中吉尔伯特阻尼参数被归因于一阶相对论效应。为了纳入磁惯性效应,LLG方程此前已通过一个补充惯性项进行了扩展;由此产生的惯性动力学与二阶相对论效应有关。在这里,我们从相对论狄拉克方程出发,通过进行福尔德-乌斯怀森变换,推导出一个广义泡利自旋哈密顿量,它包含任意高阶的相对论修正项。利用自旋运动的海森堡方程,我们推导出张量吉尔伯特阻尼和磁惯性参数的广义相对论表达式,并表明这些张量可以表示为高阶相对论修正项的级数。我们进一步表明,在简谐外部驱动场的情况下,这些级数可以求和,并且我们给出了吉尔伯特和惯性参数的封闭解析表达式,它们是驱动场频率的函数。