Suppr超能文献

RNase H 辅助的 RNA 引物滚环扩增用于靶向 RNA 序列检测。

RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection.

机构信息

Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan.

Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan.

出版信息

Sci Rep. 2018 May 17;8(1):7770. doi: 10.1038/s41598-018-26132-x.

Abstract

RNA-primed rolling circle amplification (RPRCA) is a useful laboratory method for RNA detection; however, the detection of RNA is limited by the lack of information on 3'-terminal sequences. We uncovered that conventional RPRCA using pre-circularized probes could potentially detect the internal sequence of target RNA molecules in combination with RNase H. However, the specificity for mRNA detection was low, presumably due to non-specific hybridization of non-target RNA with the circular probe. To overcome this technical problem, we developed a method for detecting a sequence of interest in target RNA molecules via RNase H-assisted RPRCA using padlocked probes. When padlock probes are hybridized to the target RNA molecule, they are converted to the circular form by SplintR ligase. Subsequently, RNase H creates nick sites only in the hybridized RNA sequence, and single-stranded DNA is finally synthesized from the nick site by phi29 DNA polymerase. This method could specifically detect at least 10 fmol of the target RNA molecule without reverse transcription. Moreover, this method detected GFP mRNA present in 10 ng of total RNA isolated from Escherichia coli without background DNA amplification. Therefore, this method can potentially detect almost all types of RNA molecules without reverse transcription and reveal full-length sequence information.

摘要

RNA 引物滚环扩增(RPRCA)是一种用于 RNA 检测的有用的实验室方法;然而,由于缺乏 3'末端序列信息,RNA 的检测受到限制。我们发现,常规的使用预环化探针的 RPRCA 可以与 RNase H 结合,潜在地检测靶 RNA 分子的内部序列。然而,mRNA 检测的特异性较低,可能是由于非靶 RNA 与环状探针的非特异性杂交所致。为了克服这个技术问题,我们开发了一种通过使用锁式探针的 RNase H 辅助 RPRCA 检测靶 RNA 分子中感兴趣序列的方法。当锁式探针与靶 RNA 分子杂交时,它们被 SplintR 连接酶转化为环状形式。随后,RNase H 仅在杂交的 RNA 序列中产生切口位点,最后由 phi29 DNA 聚合酶从切口位点合成单链 DNA。该方法无需反转录即可特异性检测至少 10 fmol 的靶 RNA 分子。此外,该方法无需背景 DNA 扩增即可检测来自大肠杆菌的 10 ng 总 RNA 中存在的 GFP mRNA。因此,该方法无需反转录即可潜在地检测几乎所有类型的 RNA 分子,并揭示全长序列信息。

相似文献

1
RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection.
Sci Rep. 2018 May 17;8(1):7770. doi: 10.1038/s41598-018-26132-x.
3
Direct detection of green fluorescent protein messenger RNA expressed in Escherichia coli by rolling circle amplification.
Anal Biochem. 2010 Jun 15;401(2):242-9. doi: 10.1016/j.ab.2010.03.011. Epub 2010 Mar 15.
5
Ultrasensitive genotyping with target-specifically generated circular DNA templates and RNA FRET probes.
Chem Commun (Camb). 2015 Jul 25;51(58):11556-9. doi: 10.1039/c5cc03738g. Epub 2015 Jun 22.
6
Signal amplification of padlock probes by rolling circle replication.
Nucleic Acids Res. 1998 Nov 15;26(22):5073-8. doi: 10.1093/nar/26.22.5073.
7
A novel isothermal method using rolling circle reverse transcription for accurate amplification of small RNA sequences.
Biochimie. 2019 Aug;163:137-141. doi: 10.1016/j.biochi.2019.06.003. Epub 2019 Jun 7.
10
Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
Talanta. 2019 Nov 1;204:29-35. doi: 10.1016/j.talanta.2019.05.057. Epub 2019 May 15.

引用本文的文献

1
Advancements and applications of loop-mediated isothermal amplification technology: a comprehensive overview.
Front Microbiol. 2024 Jul 17;15:1406632. doi: 10.3389/fmicb.2024.1406632. eCollection 2024.
2
DNA-directed formation of plasmonic core-satellite nanostructures for quantification of hepatitis C viral RNA.
Chem Sci. 2024 Apr 22;15(21):8112-8126. doi: 10.1039/d4sc00891j. eCollection 2024 May 29.
3
Fluorometric Detection of SARS-CoV-2 Single-Nucleotide Variant L452R Using Ligation-Based Isothermal Gene Amplification.
Bioengineering (Basel). 2023 Sep 23;10(10):1116. doi: 10.3390/bioengineering10101116.
7
Sensitive extraction-free SARS-CoV-2 RNA virus detection using a chelating resin.
iScience. 2021 Sep 24;24(9):102960. doi: 10.1016/j.isci.2021.102960. Epub 2021 Aug 9.
10
Sensitive extraction-free SARS-CoV-2 RNA virus detection using a novel RNA preparation method.
medRxiv. 2021 Feb 1:2021.01.29.21250790. doi: 10.1101/2021.01.29.21250790.

本文引用的文献

1
Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification.
Chem Sci. 2017 May 1;8(5):3668-3675. doi: 10.1039/c7sc00292k. Epub 2017 Mar 7.
4
Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation.
RNA. 2017 Feb;23(2):250-256. doi: 10.1261/rna.057836.116. Epub 2016 Nov 22.
5
Development of a bench-top extra-cleanroom for DNA amplification.
Biotechniques. 2016 Jul 1;61(1):42-6. doi: 10.2144/000114433. eCollection 2016.
6
Sensitive and specific miRNA detection method using SplintR Ligase.
Nucleic Acids Res. 2016 Jul 27;44(13):e116. doi: 10.1093/nar/gkw399. Epub 2016 May 6.
8
Expanding possibilities of rolling circle amplification as a biosensing platform.
Anal Sci. 2014;30(1):59-64. doi: 10.2116/analsci.30.59.
9
Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.
Nucleic Acids Res. 2014 Feb;42(3):1831-44. doi: 10.1093/nar/gkt1032. Epub 2013 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验