Suppr超能文献

一种便于数据共享的监测小鼠笼内行为的方法。

An approach to monitoring home-cage behavior in mice that facilitates data sharing.

机构信息

Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.

Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova, Italy.

出版信息

Nat Protoc. 2018 Jun;13(6):1331-1347. doi: 10.1038/nprot.2018.031. Epub 2018 May 17.

Abstract

Genetically modified mice are used as models for a variety of human behavioral conditions. However, behavioral phenotyping can be a major bottleneck in mouse genetics because many of the classic protocols are too long and/or are vulnerable to unaccountable sources of variance, leading to inconsistent results between centers. We developed a home-cage approach using a Chora feeder that is controlled by-and sends data to-software. In this approach, mice are tested in the standard cages in which they are held for husbandry, which removes confounding variables such as the stress induced by out-of-cage testing. This system increases the throughput of data gathering from individual animals and facilitates data mining by offering new opportunities for multimodal data comparisons. In this protocol, we use a simple work-for-food testing strategy as an example application, but the approach can be adapted for other experiments looking at, e.g., attention, decision-making or memory. The spontaneous behavioral activity of mice in performing the behavioral task can be monitored 24 h a day for several days, providing an integrated assessment of the circadian profiles of different behaviors. We developed a Python-based open-source analytical platform (Phenopy) that is accessible to scientists with no programming background and can be used to design and control such experiments, as well as to collect and share data. This approach is suitable for large-scale studies involving multiple laboratories.

摘要

基因修饰小鼠被用作各种人类行为状况的模型。然而,行为表型分析可能是小鼠遗传学中的一个主要瓶颈,因为许多经典的方案过于冗长,或者容易受到不可控的变异源的影响,导致不同中心之间的结果不一致。我们开发了一种使用 Chora 喂食器的笼内方法,该喂食器由软件控制并向其发送数据。在这种方法中,小鼠在用于饲养的标准笼中进行测试,从而消除了诸如出笼测试引起的应激等混杂变量。该系统增加了从单个动物收集数据的效率,并通过为多模态数据比较提供新的机会,促进了数据挖掘。在本方案中,我们使用简单的工作换食物测试策略作为示例应用,但该方法可以适应其他实验,例如注意力、决策或记忆。在执行行为任务时,小鼠的自发行为活动可以每天 24 小时进行监测,从而可以对不同行为的昼夜节律谱进行综合评估。我们开发了一个基于 Python 的开源分析平台(Phenopy),它对没有编程背景的科学家开放,可以用于设计和控制此类实验,以及收集和共享数据。这种方法适用于涉及多个实验室的大规模研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验