Suppr超能文献

用于高效全水分解的多种二维层状金属氢氧化物的节约型生产

Economizing Production of Diverse 2D Layered Metal Hydroxides for Efficient Overall Water Splitting.

作者信息

Zheng Zongmin, Lin Lele, Mo Shiguang, Ou Daohui, Tao Jing, Qin Ruixuan, Fang Xiaoliang, Zheng Nanfeng

机构信息

Power & Energy Storage System Research Center, National Engineering Research Center for Intelligent Electrical Vehicle Power System, School of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong, 266071, China.

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian, 361005, China.

出版信息

Small. 2018 Jun;14(24):e1800759. doi: 10.1002/smll.201800759. Epub 2018 May 17.

Abstract

2D layered metal hydroxides (LMH) are promising materials for electrochemical energy conversion and storage. Compared with exfoliation of bulk layered materials, wet chemistry synthesis of 2D LMH materials under mild conditions still remains a big challenge. Here, an "MgO-mediated strategy" for mass production of various 2D LMH nanosheets is presented by hydrolyzing MgO in metal salt aqueous solutions at room temperature. Benefiting from this economical and scalable strategy, ultrathin LMH nanosheets (M = Ni, Fe, Co, NiFe, and NiCo) and their derivatives (e.g., metal oxides and sulfides) can be synthesized in high yields. More importantly, this strategy opens up opportunities to fabricate hierarchically structured LMH nanosheets, resulting in high-performance electrocatalysts for the oxygen- and hydrogen-evolution reactions to realize stable overall water splitting with a low cell voltage of 1.55 V at 10 mA cm . This work provides a powerful platform for the synthesis and applications of 2D materials.

摘要

二维层状金属氢氧化物(LMH)是用于电化学能量转换和存储的有前景的材料。与块状层状材料的剥离相比,在温和条件下通过湿化学合成二维LMH材料仍然是一个巨大的挑战。在此,通过在室温下在金属盐水溶液中水解MgO,提出了一种用于大规模生产各种二维LMH纳米片的“MgO介导策略”。受益于这种经济且可扩展的策略,可以高产率合成超薄LMH纳米片(M = Ni、Fe、Co、NiFe和NiCo)及其衍生物(例如金属氧化物和硫化物)。更重要的是,该策略为制备分层结构的LMH纳米片提供了机会,从而产生用于析氧反应和析氢反应的高性能电催化剂,以在10 mA cm 下以1.55 V的低电池电压实现稳定的全水解。这项工作为二维材料的合成和应用提供了一个强大的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验