Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska.
Glob Chang Biol. 2018 Sep;24(9):4399-4416. doi: 10.1111/gcb.14315. Epub 2018 Jun 21.
Understanding how species might respond to climate change involves disentangling the influence of co-occurring environmental factors on population dynamics, and is especially problematic for migratory species like Pacific salmon that move between ecosystems. To date, debate surrounding the causes of recent declines in Yukon River Chinook salmon (Oncorhynchus tshawytscha) abundance has centered on whether factors in freshwater or marine environments control variation in survival, and how these populations at the northern extremity of the species range will respond to climate change. To estimate the effect of factors in marine and freshwater environments on Chinook salmon survival, we constructed a stage-structured assessment model that incorporates the best available data, estimates incidental marine bycatch mortality in trawl fisheries, and uses Bayesian model selection methods to quantify support for alternative hypotheses. Models fitted to two index populations of Yukon River Chinook salmon indicate that processes in the nearshore and marine environments are the most important determinants of survival. Specifically, survival declines when ice leaves the Yukon River later in the spring, increases with wintertime temperature in the Bering Sea, and declines with the abundance of globally enhanced salmon species consistent with competition at sea. In addition, we found support for density-dependent survival limitations in freshwater but not marine portions of the life cycle, increasing average survival with ocean age, and age-specific selectivity of bycatch mortality in the Bering Sea. This study underscores the utility of flexible estimation models capable of fitting multiple data types and evaluating mortality from both natural and anthropogenic sources in multiple habitats. Overall, these analyses suggest that mortality at sea is the primary driver of population dynamics, yet under warming climate Chinook salmon populations at the northern extent of the species' range may be expected to fare better than southern populations, but are influenced by foreign salmon production.
了解物种如何应对气候变化,需要理清共同存在的环境因素对种群动态的影响,对于像太平洋三文鱼这样在生态系统之间迁徙的物种来说,这尤其成问题。迄今为止,围绕育空河奇努克三文鱼(Oncorhynchus tshawytscha)数量近期下降的原因的争论,主要集中在淡水或海洋环境中的因素是否控制着存活率的变化,以及这些位于物种分布范围最北端的种群将如何应对气候变化。为了估计海洋和淡水环境因素对奇努克三文鱼存活率的影响,我们构建了一个阶段结构评估模型,该模型结合了可用的最佳数据,估计了拖网渔业中偶然的海洋兼捕死亡率,并使用贝叶斯模型选择方法来量化对替代假设的支持。拟合育空河奇努克三文鱼两个索引种群的模型表明,近岸和海洋环境中的过程是生存的最重要决定因素。具体而言,当春季后期冰离开育空河时,存活率下降,白令海的冬季温度增加,与全球增强的三文鱼物种的丰度下降一致,这与海上竞争有关。此外,我们还发现,在生命周期的淡水部分而不是海洋部分存在密度依赖的生存限制,随着海洋年龄的增加,平均存活率增加,并且在白令海存在兼捕死亡率的年龄特异性选择性。这项研究强调了灵活的估计模型的实用性,这些模型能够拟合多种数据类型,并评估来自多种栖息地的自然和人为来源的死亡率。总体而言,这些分析表明,海洋中的死亡率是种群动态的主要驱动因素,然而,在气候变暖的情况下,位于物种分布范围最北端的奇努克三文鱼种群可能比南部种群表现更好,但受到外国三文鱼产量的影响。