Department of Physics, University of Seoul, Seoul 02504, Korea.
School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea.
Phys Rev E. 2018 Mar;97(3-1):032117. doi: 10.1103/PhysRevE.97.032117.
We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.
我们研究了在磁场洛伦兹力驱动下的带电布朗粒子的朗之万动力学的低质量极限。在低质量极限下,快速松弛的速度变量被粗粒化为位置变量的有效动力学。没有洛伦兹力,低质量极限相当于高摩擦极限。这两种情况都共享相同的朗之万方程,该方程通过将质量设置为零来获得。在存在洛伦兹力的情况下,等效性会破裂。不能通过将质量设置为零来实现低质量极限。该极限也与大摩擦极限不同。我们在低质量极限下推导出了运动的有效方程。得到的随机微分方程涉及非白噪声,其相关矩阵具有反对称分量。我们通过研究受驱动的布朗粒子的热耗散来证明非白噪声的重要性,其中出现的非白噪声具有可物理测量的影响。