School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
Phys Rev E. 2018 Mar;97(3-1):032314. doi: 10.1103/PhysRevE.97.032314.
We study the phase transition from free flow to congested phases in the Nagel-Schreckenberg (NS) model by using the dynamically driven renormalization group (DDRG). The breaking probability p that governs the driving strategy is investigated. For the deterministic case p=0, the dynamics remain invariant in each renormalization-group (RG) transformation. Two fully attractive fixed points, ρ_{c}^{}=0 and 1, and one unstable fixed point, ρ_{c}^{}=1/(v_{max}+1), are obtained. The critical exponent ν which is related to the correlation length is calculated for various v_{max}. The critical exponent appears to decrease weakly with v_{max} from ν=1.62 to the asymptotical value of 1.00. For the random case p>0, the transition rules in the coarse-grained scale are found to be different from the NS specification. To have a qualitative understanding of the effect of stochasticity, the case p→0 is studied with simulation, and the RG flow in the ρ-p plane is obtained. The fixed points p=0 and 1 that govern the driving strategy of the NS model are found. A short discussion on the extension of the DDRG method to the NS model with the open-boundary condition is outlined.
我们使用动态驱动重整化群 (DDRG) 研究了 Nagel-Schreckenberg (NS) 模型中从自由流动到拥堵相的相变。研究了控制驱动策略的破坏概率 p。对于确定性情况 p=0,动力学在每个重整化群 (RG) 变换中保持不变。得到了两个完全吸引人的固定点 ρ_{c}^{}=0 和 1,以及一个不稳定的固定点 ρ_{c}^{}=1/(v_{max}+1)。计算了与相关长度相关的临界指数 ν。对于不同的 v_{max},临界指数似乎会从 ν=1.62 到渐近值 1.00 较弱地减小。对于随机情况 p>0,发现粗粒化尺度上的跃迁规则与 NS 规范不同。为了定性地了解随机性的影响,我们用模拟研究了 p→0 的情况,并得到了 ρ-p 平面上的 RG 流。发现了控制 NS 模型驱动策略的 p=0 和 1 两个固定点。概述了将 DDRG 方法扩展到具有开放边界条件的 NS 模型的简要讨论。