Suppr超能文献

基于判别全局保持核慢特征分析的批量过程故障检测与识别。

Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.

机构信息

School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China.

College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580 Shangdong, China.

出版信息

ISA Trans. 2018 Aug;79:108-126. doi: 10.1016/j.isatra.2018.05.005.

Abstract

As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables.

摘要

作为一种有吸引力的非线性动态数据分析工具,全局保持核慢特征分析(GKSFA)在提取批量过程的高度非线性和固有时变动力学方面取得了巨大成功。然而,GKSFA 是一种无监督的特征提取方法,缺乏利用批量过程类别标签信息的能力,这可能不是处理批量过程监测的最有效手段。为了克服这个问题,我们提出了一种基于改进 GKSFA 的新的批量过程监测方法,称为判别全局保持核慢特征分析(DGKSFA),通过紧密结合判别分析和 GKSFA。所提出的 DGKSFA 方法可以提取批量过程的判别特征,同时保留观测数据的全局和局部几何结构信息。为了进行故障检测,基于测试数据和正常数据的最优核特征向量之间的距离构建了一个监测统计量。为了解决非线性故障变量识别的难题,还开发了一种新的非线性贡献图方法,用于在检测到故障后帮助识别故障变量,该方法源于 DGKSFA 非线性双图中变量伪样本轨迹投影的思想。在数值非线性动态系统和基准分批青霉素发酵过程上进行的仿真结果表明,所提出的过程监测和故障诊断方法可以有效地检测故障,并将故障变量与正常变量区分开来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验