Suppr超能文献

解析植物乳杆菌中羟肉桂酸脱羧作用的还原途径作为替代代谢途径。

Unravelling the Reduction Pathway as an Alternative Metabolic Route to Hydroxycinnamate Decarboxylation in Lactobacillus plantarum.

机构信息

Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Madrid, Spain.

Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Madrid, Spain

出版信息

Appl Environ Microbiol. 2018 Jul 17;84(15). doi: 10.1128/AEM.01123-18. Print 2018 Aug 1.

Abstract

is the lactic acid bacterial species most frequently found in plant-food fermentations where hydroxycinnamic acids are abundant. efficiently decarboxylates these compounds and also reduces them, yielding substituted phenylpropionic acids. Although the reduction step is known to be induced by a hydroxycinnamic acid, the enzymatic machinery responsible for this reduction pathway has not been yet identified and characterized. A previous study on the transcriptomic response of to -coumaric acid revealed a marked induction of two contiguous genes, and , encoding putative reductases. In this work, the disruption of these genes abolished the hydroxycinnamate reductase activity of , supporting their involvement in such chemical activity. Functional studies revealed that Lp_1425 (HcrB) exhibits hydroxycinnamate reductase activity but was unstable in solution. In contrast, Lp_1424 (HcrA) was inactive but showed high stability. When the genes were co-overexpressed, the formation of an active heterodimer (HcrAB) was observed. Since reductase activity was only observed on hydroxycinnamic acids (-coumaric, -coumaric, -coumaric, caffeic, ferulic, and sinapic acids), the presence of a hydroxyl group substituent on the benzene ring appears to be required for activity. In addition, hydroxycinnamate reductase activity was not widely present among lactic acid bacteria, and it was associated with the presence of genes. This study revealed that hydroxycinnamate reductase is a heterodimeric NADH-dependent coumarate reductase acting on a carbon-carbon double bond. is a bacterial species frequently found in the fermentation of vegetables where hydroxycinnamic acids are present. The bacterial metabolism on these compounds during fermentation plays a fundamental role in the biological activity of hydroxycinnamates. strains exhibit an as yet unknown reducing activity, transforming hydroxycinnamates to substituted phenylpropionic acids, which possess higher antioxidant activity than their precursors. The protein machinery involved in hydroxycinnamate reduction, HcrAB, was genetically identified and characterized. The heterodimeric NADH-dependent coumarate reductase HcrAB described in this work provides new insights on the metabolic response to counteract the stressful conditions generated by food phenolics.

摘要

是植物性食品发酵中最常发现的乳杆菌属物种,而这些发酵中富含羟基肉桂酸。 能够有效地脱羧这些化合物,并将其还原,生成取代的苯基丙酸。虽然还原步骤已知是由羟基肉桂酸诱导的,但负责这种还原途径的酶机制尚未被鉴定和表征。之前的研究表明, 对 -香豆酸的转录组反应显著诱导了两个相邻基因 和 ,分别编码假定的还原酶。在这项工作中,这些基因的破坏消除了 的羟基肉桂酸还原酶活性,支持了它们参与这种化学活性。功能研究表明,Lp_1425(HcrB)表现出羟基肉桂酸还原酶活性,但在溶液中不稳定。相比之下,Lp_1424(HcrA)不活跃,但表现出很高的稳定性。当 基因共同过表达时,观察到活性异源二聚体(HcrAB)的形成。由于 还原酶活性仅在羟基肉桂酸(-香豆酸、-香豆酸、-香豆酸、咖啡酸、阿魏酸和芥子酸)上观察到,因此苯环上的羟基取代基的存在似乎是必需的。此外,羟基肉桂酸还原酶活性在乳酸菌中并不广泛存在,并且与 基因的存在相关。这项研究表明, 羟基肉桂酸还原酶是一种依赖 NADH 的异源二聚体香豆酸还原酶,作用于碳-碳双键。 是一种经常在含有羟基肉桂酸的蔬菜发酵中发现的细菌物种。在发酵过程中,细菌对这些化合物的代谢在羟基肉桂酸的生物活性中起着至关重要的作用。 菌株表现出未知的还原活性,将羟基肉桂酸转化为取代的苯基丙酸,其抗氧化活性高于其前体。参与羟基肉桂酸还原的蛋白质机制,HcrAB,通过遗传被鉴定和表征。本研究中描述的依赖 NADH 的异源二聚体香豆酸还原酶 HcrAB 为 对食物酚类物质产生的应激条件的代谢反应提供了新的见解。

相似文献

1
Unravelling the Reduction Pathway as an Alternative Metabolic Route to Hydroxycinnamate Decarboxylation in Lactobacillus plantarum.
Appl Environ Microbiol. 2018 Jul 17;84(15). doi: 10.1128/AEM.01123-18. Print 2018 Aug 1.
2
Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols.
Appl Environ Microbiol. 2018 Aug 17;84(17). doi: 10.1128/AEM.01064-18. Print 2018 Sep 1.
3
Genetic Determinants of Hydroxycinnamic Acid Metabolism in Heterofermentative Lactobacilli.
Appl Environ Microbiol. 2020 Feb 18;86(5). doi: 10.1128/AEM.02461-19.
4
Food phenolics and Lactiplantibacillus plantarum.
Int J Food Microbiol. 2024 Feb 16;412:110555. doi: 10.1016/j.ijfoodmicro.2023.110555. Epub 2024 Jan 2.
6
Characterization of isogenic mutants with single or double deletions of four phenolic acid esterases in Lactiplantibacillus plantarum TMW1.460.
Int J Food Microbiol. 2023 Mar 2;388:110100. doi: 10.1016/j.ijfoodmicro.2023.110100. Epub 2023 Jan 20.
7
Characterization of a cold-active esterase from Lactobacillus plantarum suitable for food fermentations.
J Agric Food Chem. 2014 Jun 4;62(22):5126-32. doi: 10.1021/jf501493z. Epub 2014 May 23.
8
Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.
Appl Environ Microbiol. 2000 Dec;66(12):5322-8. doi: 10.1128/AEM.66.12.5322-5328.2000.
9
Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.
Appl Environ Microbiol. 2014 Dec;80(24):7574-82. doi: 10.1128/AEM.02413-14. Epub 2014 Sep 26.
10
The use of esterase genes: a biotechnological strategy to increase the bioavailability of dietary phenolic compounds in lactic acid bacteria.
Int J Food Sci Nutr. 2021 Dec;72(8):1035-1045. doi: 10.1080/09637486.2021.1900078. Epub 2021 Mar 17.

引用本文的文献

1
Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds.
Gut Microbes. 2024 Jan-Dec;16(1):2426614. doi: 10.1080/19490976.2024.2426614. Epub 2024 Nov 14.
4
Our extended microbiome: The human-relevant metabolites and biology of fermented foods.
Cell Metab. 2024 Apr 2;36(4):684-701. doi: 10.1016/j.cmet.2024.03.007.
6
Revised Aspects into the Molecular Bases of Hydroxycinnamic Acid Metabolism in Lactobacilli.
Antioxidants (Basel). 2023 Jun 17;12(6):1294. doi: 10.3390/antiox12061294.
7
Role of Phenolic Acid Metabolism in Enhancing Bioactivity of Mentha Extract Fermented with Plant-Derived Lactobacillus plantarum SN13T.
Probiotics Antimicrob Proteins. 2024 Jun;16(3):1052-1064. doi: 10.1007/s12602-023-10103-4. Epub 2023 Jun 6.
8
Transmembrane Transcription Regulators Are Widespread in Bacteria and Archaea.
Microbiol Spectr. 2023 Jun 15;11(3):e0026623. doi: 10.1128/spectrum.00266-23. Epub 2023 May 8.

本文引用的文献

1
Recombinant expression and characterisation of the oxygen-sensitive 2-enoate reductase from Clostridium sporogenes.
Microbiology (Reading). 2018 Feb;164(2):122-132. doi: 10.1099/mic.0.000568. Epub 2017 Nov 7.
2
Pitfalls in the identification of Enterococcus species and the detection of vanA and vanB genes.
Lett Appl Microbiol. 2016 Sep;63(3):189-95. doi: 10.1111/lam.12610. Epub 2016 Aug 5.
3
Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase.
Metab Eng. 2016 May;35:75-82. doi: 10.1016/j.ymben.2016.02.002. Epub 2016 Feb 9.
5
Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree.
Food Microbiol. 2015 Apr;46:272-279. doi: 10.1016/j.fm.2014.08.018. Epub 2014 Aug 30.
6
Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.
Appl Environ Microbiol. 2014 Dec;80(24):7574-82. doi: 10.1128/AEM.02413-14. Epub 2014 Sep 26.
7
H(2)O(2) production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-dependent flavin reductase.
Appl Environ Microbiol. 2014 Apr;80(7):2229-39. doi: 10.1128/AEM.04272-13. Epub 2014 Jan 31.
8
Genome-wide transcriptomic responses of a human isolate of Lactobacillus plantarum exposed to p-coumaric acid stress.
Mol Nutr Food Res. 2012 Dec;56(12):1848-59. doi: 10.1002/mnfr.201200384. Epub 2012 Oct 15.
9
Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria.
J Appl Microbiol. 2011 Nov;111(5):1176-84. doi: 10.1111/j.1365-2672.2011.05141.x. Epub 2011 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验