Suppr超能文献

2016 年伯纳德·萨克斯讲座:正常发育和神经系统畸形中形态发生和遗传梯度的时间。

The 2016 Bernard Sachs Lecture: Timing in Morphogenesis and Genetic Gradients During Normal Development and in Malformations of the Nervous System.

机构信息

Departments of Paediatrics, Pathology (Neuropathology), and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.

出版信息

Pediatr Neurol. 2018 Jun;83:3-13. doi: 10.1016/j.pediatrneurol.2017.08.015. Epub 2018 Mar 30.

Abstract

Nervous system development is quadradimensional. Both normal ontogenesis and developmental malformations are explained in the context of the fourth dimension, timing. Timing of the onset of either the genetic expression of a mutation or an epigenetic event that may be teratogenic is primordial in determining morphogenesis and the forms of malformations with their functional consequences. Multiple genotypes may cause similar phenotypes or a single genotype with different degrees of retained normal genetic expression may result in variable phenotypes. In this treatise, examples are presented of these principles, including both delayed and precocious maturation of processes such as synaptogenesis that may be out of synchrony with other simultaneous processes of neuronal maturation. In postzygotic somatic mosaicism, timing of onset determines not only the character but also the extent of a lesion; focal cortical dysplasia IIb and hemimegalencephaly are the same disease, both sharing activation of the mTOR pathway as the primary mechanism; the difference is timing of onset within the 33 mitotic cycles of the periventricular neuroepithelium. Genetic expression often follows gradients along the 3 axes of the neural tube. Defective gradients often can be identified by their morphological result without knowing the precise mutation. Upregulation in the vertical axis produces hyperplasia or duplication of either dorsal or ventral structures, whereas downregulation yields hypoplasia or fusion in the midline of bilateral structures. Disorders of segmentation or neuromere formation in the neural tube are increasingly recognized as another pathogenesis of cerebral dysgenesis. Our recent investigations show the participation of the U-fibre layer beneath FCD in epileptic networks because of neuronal dispersion with elaborate synaptic plexi and a barrier to deep heterotopia.

摘要

神经系统的发育是四维度的。正常的个体发生和发育畸形都是在第四个维度——时间的背景下解释的。无论是基因突变的遗传表达还是可能致畸的表观遗传事件的起始时间,对于形态发生和畸形的形式及其功能后果都是至关重要的。多种基因型可能导致相似的表型,或者具有不同程度保留正常遗传表达的单一基因型也可能导致不同的表型。在本文中,我们将介绍这些原则的实例,包括突触发生等过程的延迟和早熟,这些过程可能与神经元成熟的其他同时发生的过程不同步。在后合子体马赛克中,起始时间不仅决定了病变的特征,还决定了病变的程度;局灶性皮质发育不良 IIb 和偏侧巨脑畸形是同一种疾病,都共同激活 mTOR 通路作为主要机制;区别在于脑室周围神经上皮的 33 个有丝分裂周期内的起始时间。基因表达通常沿着神经管的 3 个轴呈梯度分布。通过其形态学结果,即使不知道确切的突变,也常常可以识别出有缺陷的梯度。垂直轴的上调会导致背侧或腹侧结构的增生或复制,而下调则会导致双侧结构中线的发育不良或融合。神经管的分段或神经节形成障碍越来越被认为是大脑发育不良的另一种发病机制。我们最近的研究表明,FCD 下方的 U 纤维层参与了癫痫网络,因为神经元分散形成了精细的突触丛,而且成为了深部异位的障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验