Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India.
Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
J Plant Physiol. 2018 Aug;227:84-92. doi: 10.1016/j.jplph.2018.05.002. Epub 2018 May 12.
Inhibition of photosynthesis is a central, primary response that is observed in both desiccation-tolerant and desiccation-sensitive plants affected by drought stress. Decreased photosynthesis during drought stress can either be due to the limitation of carbon dioxide entry through the stomata and the mesophyll cells, due to increased oxidative stress or due to decreased activity of photosynthetic enzymes. Although the photosynthetic rates decrease in both desiccation-tolerant and sensitive plants during drought, the remarkable difference lies in the complete recovery of photosynthesis after rehydration in desiccation-tolerant plants. Desiccation of sensitive plants leads to irreparable damages of the photosynthetic membranes, in contrast the photosynthetic apparatus is deactivated during desiccation in desiccation-tolerant plants. Desiccation-tolerant plants employ different strategies to protect and/or maintain the structural integrity of the photosynthetic apparatus to reactivate photosynthesis upon water availability. Two major mechanisms are distinguished. Homoiochlorophyllous desiccation-tolerant plants preserve chlorophyll and thylakoid membranes and require active protection mechanisms, while poikilochlorophyllous plants degrade chlorophyll in a regulated manner but then require de novo synthesis during rehydration. Desiccation-tolerant plants, particularly homoiochlorophyllous plants, employ conserved and novel antioxidant enzymes/metabolites to minimize the oxidative damage and to protect the photosynthetic machinery. De novo synthesized, stress-induced proteins in combination with antioxidants are localized in chloroplasts and are important components of the protective network. Genome sequence informations provide some clues on selection of genes involved in protecting photosynthetic structures; e.g. ELIP genes (early light inducible proteins) are enriched in the genomes and more abundantly expressed in homoiochlorophyllous desiccation-tolerant plants. This review focuses on the mechanisms that operate in the desiccation-tolerant plants to protect the photosynthetic apparatus during desiccation.
光合作用的抑制是一个中心的、主要的反应,在受干旱胁迫影响的耐旱和敏感植物中都有观察到。在干旱胁迫下,光合作用的降低要么是由于气孔和叶肉细胞中二氧化碳进入的限制,要么是由于氧化应激的增加,要么是由于光合作用酶的活性降低。虽然耐旱和敏感植物在干旱期间的光合速率都降低,但显著的区别在于耐旱植物在重新水合后光合作用完全恢复。敏感植物的干燥导致光合膜不可挽回的损伤,相比之下,在耐旱植物中,光合作用装置在干燥过程中失活。耐旱植物采用不同的策略来保护和/或维持光合作用装置的结构完整性,以便在有水分时重新激活光合作用。区分出两种主要机制。同型叶绿素耐旱植物保留叶绿素和类囊体膜,并需要主动保护机制,而斑叶植物以受调控的方式降解叶绿素,但在重新水合时需要从头合成。耐旱植物,特别是同型叶绿素耐旱植物,利用保守和新颖的抗氧化酶/代谢物来最小化氧化损伤并保护光合作用机器。新合成的、应激诱导的蛋白质与抗氧化剂一起定位于叶绿体中,是保护网络的重要组成部分。基因组序列信息提供了一些关于参与保护光合结构的基因选择的线索;例如,ELIP 基因(早期光诱导蛋白)在基因组中丰富,并在同型叶绿素耐旱植物中表达更丰富。本综述重点介绍了在耐旱植物中起作用的机制,以在干燥过程中保护光合作用装置。