Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL , Universidad de Castilla-La Mancha , Avenida Carlos III, S/N , 45071 Toledo , Spain.
Instituto de Tecnología Química , Universitat Politecnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC) , Av. de los Naranjos s/n , 46022 Valencia , Spain.
ACS Appl Mater Interfaces. 2018 Jun 13;10(23):20159-20169. doi: 10.1021/acsami.8b04222. Epub 2018 May 30.
In this work, we unravel how the two-dimensional Al-ITQ-4-heptylbenzoic acid (HB) metal-organic framework (MOF) changes the interactions of Nile red (NR) adsorbed on its surface. Time-resolved emission experiments indicate the occurrence of energy transfer between adsorbed NR molecules, in abnormally long time constant of 2-2.5 ns, which gets shorter (∼0.25 ns) when the concentration of the surface-adsorbed NR increases. We identify the emission from local excited state of aggregates and charge transfer and energy transfer between adsorbed molecules. Femtosecond emission studies reveal an ultrafast process (∼425 fs) in the NR@Al-ITQ-HB composites, assigned to an intramolecular charge transfer in NR molecules. A comparison of the observed photobehavior with that of NR/SiO and NR/AlO composites suggests that the occurrence of energy transfer in the NR@MOF complexes is a result of specific and nonspecific interactions, reflecting the different surface properties of Al-ITQ-HB that are of relevance to the reported high catalytic activity. Our results provide new knowledge for further researches on other composites with the aim to improve understanding of photocatalytic and photonic processes within MOFs.
在这项工作中,我们揭示了二维 Al-ITQ-4-庚基苯甲酸(HB)金属有机骨架(MOF)如何改变吸附在其表面上的尼罗红(NR)的相互作用。时间分辨发射实验表明,吸附在 NR 分子之间发生了能量转移,在异常长的 2-2.5 ns 时间常数下,当表面吸附的 NR 浓度增加时,时间常数变短(∼0.25 ns)。我们确定了聚集体的局部激发态和吸附分子之间的电荷转移和能量转移的发射。飞秒发射研究揭示了 NR@Al-ITQ-HB 复合材料中的超快过程(∼425 fs),归因于 NR 分子中的分子内电荷转移。与 NR/SiO 和 NR/AlO 复合材料的观察到的光行为进行比较表明,NR@MOF 配合物中能量转移的发生是特定和非特定相互作用的结果,反映了与报道的高催化活性相关的 Al-ITQ-HB 的不同表面性质。我们的结果为进一步研究其他复合材料提供了新知识,旨在提高对 MOFs 内光催化和光子过程的理解。