Suppr超能文献

剖析基于全基因组测序的用于预测结核分枝杆菌耐药性的在线工具:我们能否将其用于临床决策指导?

Dissecting whole-genome sequencing-based online tools for predicting resistance in Mycobacterium tuberculosis: can we use them for clinical decision guidance?

作者信息

Macedo Rita, Nunes Alexandra, Portugal Isabel, Duarte Sílvia, Vieira Luís, Gomes João Paulo

机构信息

National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.

Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.

出版信息

Tuberculosis (Edinb). 2018 May;110:44-51. doi: 10.1016/j.tube.2018.03.009. Epub 2018 Mar 27.

Abstract

Whole-genome sequencing (WGS)-based bioinformatics platforms for the rapid prediction of resistance will soon be implemented in the Tuberculosis (TB) laboratory, but their accuracy assessment still needs to be strengthened. Here, we fully-sequenced a total of 54 multidrug-resistant (MDR) and five susceptible TB strains and performed, for the first time, a simultaneous evaluation of the major four free online platforms (TB Profiler, PhyResSE, Mykrobe Predictor and TGS-TB). Overall, the sensitivity of resistance prediction ranged from 84.3% using Mykrobe predictor to 95.2% using TB profiler, while specificity was higher and homogeneous among platforms. TB profiler revealed the best performance robustness (sensitivity, specificity, PPV and NPV above 95%), followed by TGS-TB (all parameters above 90%). We also observed a few discrepancies between phenotype and genotype, where, in some cases, it was possible to pin-point some "candidate" mutations (e.g., in the rpsL promoter region) highlighting the need for their confirmation through mutagenesis assays and potential review of the anti-TB genetic databases. The rampant development of the bioinformatics algorithms and the tremendously reduced time-frame until the clinician may decide for a definitive and most effective treatment will certainly trigger the technological transition where WGS-based bioinformatics platforms could replace phenotypic drug susceptibility testing for TB.

摘要

基于全基因组测序(WGS)的用于快速预测耐药性的生物信息学平台很快将在结核病(TB)实验室中实施,但其准确性评估仍需加强。在此,我们对总共54株耐多药(MDR)结核菌株和5株敏感结核菌株进行了全测序,并首次对四个主要的免费在线平台(TB Profiler、PhyResSE、Mykrobe Predictor和TGS-TB)进行了同步评估。总体而言,耐药性预测的敏感性范围为使用Mykrobe predictor时的84.3%至使用TB profiler时的95.2%,而各平台之间的特异性更高且较为一致。TB profiler表现出最佳的性能稳健性(敏感性、特异性、阳性预测值和阴性预测值均高于95%),其次是TGS-TB(所有参数均高于90%)。我们还观察到表型和基因型之间存在一些差异,在某些情况下,可以确定一些“候选”突变(例如,在rpsL启动子区域),这突出表明需要通过诱变试验对其进行确认,并可能需要对结核病抗药基因数据库进行审查。生物信息学算法的迅猛发展以及临床医生做出最终最有效治疗决策所需时间的大幅缩短,肯定会引发技术转型,即基于WGS的生物信息学平台可能会取代结核病的表型药物敏感性检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验