Suppr超能文献

纹状体通过即时动作选择来组织 3D 行为。

The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

出版信息

Cell. 2018 Jun 28;174(1):44-58.e17. doi: 10.1016/j.cell.2018.04.019. Epub 2018 May 17.

Abstract

Many naturalistic behaviors are built from modular components that are expressed sequentially. Although striatal circuits have been implicated in action selection and implementation, the neural mechanisms that compose behavior in unrestrained animals are not well understood. Here, we record bulk and cellular neural activity in the direct and indirect pathways of dorsolateral striatum (DLS) as mice spontaneously express action sequences. These experiments reveal that DLS neurons systematically encode information about the identity and ordering of sub-second 3D behavioral motifs; this encoding is facilitated by fast-timescale decorrelations between the direct and indirect pathways. Furthermore, lesioning the DLS prevents appropriate sequence assembly during exploratory or odor-evoked behaviors. By characterizing naturalistic behavior at neural timescales, these experiments identify a code for elemental 3D pose dynamics built from complementary pathway dynamics, support a role for DLS in constructing meaningful behavioral sequences, and suggest models for how actions are sculpted over time.

摘要

许多自然行为是由顺序表达的模块化组件构建而成的。尽管纹状体电路与动作选择和执行有关,但在不受约束的动物中组成行为的神经机制尚不清楚。在这里,我们记录了背外侧纹状体(DLS)的直接和间接通路中的整体和细胞神经活动,因为小鼠会自发地表达动作序列。这些实验表明,DLS 神经元系统地编码了关于亚秒 3D 行为模式的身份和顺序的信息;这种编码是通过直接和间接通路之间的快速时间尺度去相关来促进的。此外,DLS 的损伤会阻止在探索或气味诱发的行为期间进行适当的序列组装。通过在神经时间尺度上对自然行为进行特征描述,这些实验为从互补通路动力学构建的基本 3D 姿势动力学确定了一个代码,支持 DLS 在构建有意义的行为序列中的作用,并为动作如何随时间塑造提供了模型。

相似文献

1
The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection.
Cell. 2018 Jun 28;174(1):44-58.e17. doi: 10.1016/j.cell.2018.04.019. Epub 2018 May 17.
2
Spontaneous behaviour is structured by reinforcement without explicit reward.
Nature. 2023 Feb;614(7946):108-117. doi: 10.1038/s41586-022-05611-2. Epub 2023 Jan 18.
4
Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice.
Front Neural Circuits. 2017 Aug 17;11:57. doi: 10.3389/fncir.2017.00057. eCollection 2017.
5
Coordinated Ramping of Dorsal Striatal Pathways preceding Food Approach and Consumption.
J Neurosci. 2018 Apr 4;38(14):3547-3558. doi: 10.1523/JNEUROSCI.2693-17.2018. Epub 2018 Mar 9.
6
Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice.
J Neurosci. 2017 Jun 7;37(23):5758-5769. doi: 10.1523/JNEUROSCI.0622-17.2017. Epub 2017 May 4.
7
8
Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.
Neuron. 2016 Oct 5;92(1):202-213. doi: 10.1016/j.neuron.2016.08.037. Epub 2016 Sep 22.
10
Dynamic postnatal development of the cellular and circuit properties of striatal D1 and D2 spiny projection neurons.
J Physiol. 2019 Nov;597(21):5265-5293. doi: 10.1113/JP278416. Epub 2019 Oct 10.

引用本文的文献

1
Correctness is its own reward: bootstrapping error signals in self-guided reinforcement learning.
bioRxiv. 2025 Aug 19:2025.07.18.665446. doi: 10.1101/2025.07.18.665446.
2
A study of animal action segmentation algorithms across supervised, unsupervised, and semi-supervised learning paradigms.
Neuron Behav Data Anal Theory. 2024;2024. doi: 10.51628/001c.127770. Epub 2024 Dec 20.
5
6
Striatal pathways oppositely shift cortical activity along the decision axis.
bioRxiv. 2025 Jul 30:2025.07.29.667406. doi: 10.1101/2025.07.29.667406.
7
Subsecond Analysis of Locomotor Activity in Parkinsonian Mice.
eNeuro. 2025 Aug 5;12(8). doi: 10.1523/ENEURO.0014-25.2025. Print 2025 Aug.
9
Functional ultrasound imaging and prewhitening analysis reveal MK-801-induced disruption of brain network connectivity.
Front Pharmacol. 2025 Jun 3;16:1562102. doi: 10.3389/fphar.2025.1562102. eCollection 2025.
10
Spatiotemporal properties of cortical excitatory and inhibitory neuron activation by sustained and bursting electrical microstimulation.
iScience. 2025 May 20;28(6):112707. doi: 10.1016/j.isci.2025.112707. eCollection 2025 Jun 20.

本文引用的文献

1
Optogenetic dissection of descending behavioral control in .
Elife. 2018 Jun 26;7:e34275. doi: 10.7554/eLife.34275.
3
The Spatiotemporal Organization of the Striatum Encodes Action Space.
Neuron. 2017 Aug 30;95(5):1171-1180.e7. doi: 10.1016/j.neuron.2017.08.015.
4
Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.
Neuron. 2016 Oct 5;92(1):202-213. doi: 10.1016/j.neuron.2016.08.037. Epub 2016 Sep 22.
5
Sensitive red protein calcium indicators for imaging neural activity.
Elife. 2016 Mar 24;5:e12727. doi: 10.7554/eLife.12727.
6
Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data.
Neuron. 2016 Jan 20;89(2):285-99. doi: 10.1016/j.neuron.2015.11.037. Epub 2016 Jan 7.
7
Mapping Sub-Second Structure in Mouse Behavior.
Neuron. 2015 Dec 16;88(6):1121-1135. doi: 10.1016/j.neuron.2015.11.031.
8
Dopamine Is Required for the Neural Representation and Control of Movement Vigor.
Cell. 2015 Sep 10;162(6):1418-30. doi: 10.1016/j.cell.2015.08.014.
10
The striatum multiplexes contextual and kinematic information to constrain motor habits execution.
Nat Neurosci. 2015 Mar;18(3):453-60. doi: 10.1038/nn.3924. Epub 2015 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验