Holden William M, Seidler Gerald T, Cheah Singfoong
Physics Department , University of Washington , Seattle Washington 98122 , United States.
National Renewable Energy Laboratory , 15013 Denver West Parkway, MS 3322 , Golden , Colorado 80401 , United States.
J Phys Chem A. 2018 Jun 14;122(23):5153-5161. doi: 10.1021/acs.jpca.8b02816. Epub 2018 May 30.
The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given by benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Kα XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.
含硫材料的分析化学面临着重大的技术挑战,特别是由于核磁共振硫谱(S NMR)的局限性以及湿化学分析所需的耗时准备工作。许多先前的研究发现,在这种情况下,基于同步加速器的X射线吸收近边结构(XANES)测量可以给出硫化学的详细形态。然而,由于明显的使用限制,硫的同步加速器XANES无法成为整个化学科学界常规分析实践的一部分。在这里,在一项关于生物炭中硫化学的研究中,我们比较并对比了同步加速器XANES与台式超高分辨率波长色散X射线荧光(WD-XRF)光谱(也常称为X射线发射光谱(XES))所提供的化学推断。虽然XANES光谱具有更高的总信息含量,通常能够区分具有相同氧化态的不同部分,但S Kα XES对配位和局部结构的较低灵敏度为量化硫氧化态分布这一较为有限的目标提供了实际益处。在该受限指标范围内,我们发现这两种方法之间具有良好的一致性。由于硫浓度低至150 ppm,这些测量为生物炭硫化学的表征以及在土壤、电池、催化剂和化石燃料及其燃烧产物等其他领域的潜在应用提供了原理验证。