Suppr超能文献

核增殖组学:一个新的研究领域,旨在鉴定α-UO 上所示核材料的特征。

Nuclear proliferomics: A new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO.

机构信息

University of Utah, Department of Civil and Environmental Engineering, Nuclear Engineering Program, 201 Presidents Circle, Salt Lake City, UT 84112, United States.

University of Utah, Department of Electrical and Computer Engineering, 201 Presidents Circle, Salt Lake City, UT 84112, United States.

出版信息

Talanta. 2018 Aug 15;186:433-444. doi: 10.1016/j.talanta.2018.04.092. Epub 2018 Apr 30.

Abstract

The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide polymorph, α-UO, in this paper, nuclear proliferomics increases the ability to improve confidence in identifying the processing history of nuclear materials. Specifically, α-UO was investigated from the calcination of unwashed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the investigated temperatures. Differential scanning calorimetry (DSC), UV-Vis spectrophotometry, powder X-ray diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the source of these morphological differences as a function of calcination temperature. Additionally, the SEM images were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable differences in morphology for three different surface features present on the unwashed uranyl peroxide calcination products. No single quantifiable signature was sufficient to discern all calcination temperatures with a high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate automated discernment with at least 89% accuracy.

摘要

在核取证和核保障中使用有限数量的特征可能会降低识别未知核材料或验证现有设施处理过程的能力。核增殖组学是一个新提出的研究领域,主张从各种分析技术中获取大量核材料特性的数据库。本文以常见的三氧化铀多晶型物 α-UO 为例,展示了核增殖组学提高了识别核材料处理历史的置信度的能力。具体来说,本文研究了未洗涤的过氧化铀在空气下于 350、400、450、500 和 550°C 煅烧时的 α-UO。获得了表面形貌的扫描电子显微镜 (SEM) 图像,并呈现了未洗涤和洗涤过的过氧化铀以及在研究温度下由未洗涤的过氧化铀煅烧产物之间的明显定性差异。差示扫描量热法 (DSC)、紫外-可见分光光度法、粉末 X 射线衍射 (p-XRD) 和热重分析-质谱 (TGA-MS) 用于理解这些形态差异的来源作为煅烧温度的函数。此外,使用 Morphological Analysis for MAterials (MAMA) 软件对 SEM 图像进行了手动分割,以识别未洗涤的过氧化铀煅烧产物表面上存在的三种不同表面特征的可量化差异。没有单一的可量化特征足以高度置信地辨别所有煅烧温度;因此,进行了高级统计分析,允许将多个定量特征及其相关不确定性组合在一起,以便通过煅烧历史进行完整的辨别。此外,将机器学习应用于获得的 SEM 图像,以证明具有至少 89%准确性的自动辨别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验