Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
Phys Chem Chem Phys. 2018 Jul 4;20(26):17599-17605. doi: 10.1039/c8cp01957f.
To date, most studies of heterogeneous catalysis have focused on metal particles supported on the surface of substrates. However, studies of the catalytic properties of metallic nanoparticles supported on the interior surface of nanotubes are rare. Using first-principles calculations based on density functional theory, we have studied the CO oxidation on a single nickel atom confined in a nitrogen vacancy on the inside surface of boron nitride nanotubes (BNNT). By exploring the Eley-Rideal mechanism, we find that an Ni atom embedded on the interior surface of BNNTs exhibits a much higher catalytic activity for CO oxidation when compared with Ni doped on their outside surface. In addition, the energy barriers of the rate-determining step for CO oxidation on Ni embedded on the inside wall of BNNT(5,5), BNNT(6,6) and BNNT(7,7) are 0.39, 0.29 and 0.33 eV, respectively. The results illustrate the merit of confinement for CO oxidation.
迄今为止,大多数多相催化研究都集中在负载于基底表面的金属颗粒上。然而,关于负载于纳米管内表面的金属纳米粒子的催化性质的研究却很少。本研究采用基于密度泛函理论的第一性原理计算,研究了限域于氮化硼纳米管(BNNT)内表面氮空位中的单个镍原子的 CO 氧化反应。通过探索 Eley-Rideal 机制,我们发现与掺杂在 BNNTs 外表面的 Ni 相比,负载于 BNNTs 内表面的 Ni 原子对 CO 氧化具有更高的催化活性。此外,在 BNNT(5,5)、BNNT(6,6)和 BNNT(7,7)内管壁上嵌入 Ni 的 CO 氧化速率决定步骤的能垒分别为 0.39、0.29 和 0.33 eV。结果表明,限域作用有利于 CO 的氧化。