Suppr超能文献

通过分析在番茄和茄子上的致病型中共享的效应子基因,发现水平基因转移的证据和效应子识别与效应子功能的分离。

Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum.

机构信息

Plant Sciences Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.

Phytosanitary Management Division, CORPOICA, Bogotá, Colombia.

出版信息

Mol Plant Pathol. 2018 Oct;19(10):2302-2318. doi: 10.1111/mpp.12700. Epub 2018 Sep 6.

Abstract

RNA sequencing (RNAseq) reads from cape gooseberry plants (Physalis peruviana) infected with Fusarium oxysporumf. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporumf. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1(designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1bwere tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant shows reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3.These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph.Alternatively, cape gooseberry germplasm could be explored for I-3homologues capable of providing resistance to Foph.

摘要

从感染 Physalis peruviana 的 RNA 测序 (RNAseq) 阅读中,针对 Fusarium oxysporumf. sp. physali (Foph) 进行了谱系特异性转录组映射,以寻找可能的效应基因。鉴定了 Fol SIX1(命名为 SIX1a 和 SIX1b)、SIX7、SIX10、SIX12、SIX15 和 Ave1 的同源物。Foph 和 Fol SIX7、SIX10 和 SIX12 基因及其基因间区的近同源性表明,该基因簇可能经历了近期的侧向转移。测试了 Foph SIX1a 和 SIX1b 对 Fol SIX1 敲除突变体的互补能力。该突变体在易感番茄植物上的致病性降低,但能够感染携带 Fusarium wilt 抗性 I-3 基因的其他抗性番茄植物(SIX1 对应于 Avr3)。SIX1a 和 SIX1b 均不能在易感番茄植物上恢复完全的致病性,表明它们在致病性中可能发挥的任何作用都可能是针对 cape gooseberry 的。只有 SIX1b 而不是 SIX1a 能够恢复携带 I-3 的番茄植物的无毒力。这些发现将 SIX1 的识别与其作为效应物的作用分开,并表明 I-3 的直接识别。在 F.oxysporum 种复合物内经历多样化选择的 SIX1 的高变区可能在 SIX1 识别中发挥重要作用。这些发现还表明,I-3 有可能作为 cape gooseberry 的转基因被部署,以保护这种新兴作物免受 Foph 的侵害。或者,可以探索 cape gooseberry 种质资源,寻找能够提供对 Foph 抗性的 I-3 同源物。

相似文献

引用本文的文献

8
Pro-domain processing of fungal effector proteins from plant pathogens.植物病原体真菌效应蛋白的前结构域加工
PLoS Pathog. 2021 Oct 20;17(10):e1010000. doi: 10.1371/journal.ppat.1010000. eCollection 2021 Oct.
10
Secreted in Xylem Genes: Drivers of Host Adaptation in .木质部分泌基因:……中宿主适应性的驱动因素
Front Plant Sci. 2021 Apr 22;12:628611. doi: 10.3389/fpls.2021.628611. eCollection 2021.

本文引用的文献

6
Effector profiles distinguish formae speciales of Fusarium oxysporum.效应子谱区分尖孢镰刀菌的专化型。
Environ Microbiol. 2016 Nov;18(11):4087-4102. doi: 10.1111/1462-2920.13445. Epub 2016 Jul 29.
8
Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici.番茄枯萎病菌中的非必需染色体
Mol Plant Pathol. 2016 Dec;17(9):1455-1466. doi: 10.1111/mpp.12440. Epub 2016 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验