Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner Straße 34 , D-85354 Freising , Germany.
ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany.
J Agric Food Chem. 2018 Jun 6;66(22):5621-5634. doi: 10.1021/acs.jafc.8b02092. Epub 2018 May 29.
Saliva flow measurements and SDS-PAGE separation of human whole saliva freshly collected after oral stimulation with citric acid (sour), aspartame (sweet), iso-α-acids (bitter), mono sodium l-glutamate (umami), NaCl (salty), 6-gingerol (pungent), hydroxy-α-sanshool (tingling), and hydroxy-β-sanshool (numbing), followed by tryptic digestion, nano-HPLC-MS/MS, and label-free protein quantitation demonstrated a stimulus- and time-dependent influence of the dietary chemosensates on salivation and the salivary proteome composition. Gene ontology enrichment analysis showed evidence for stimulus-induced alterations of the saliva proteome to boot an efficient molecular defense network of the oral cavity, e.g., 6-gingerol increased salivary lactoperoxidase activity, catalyzing the oxidation of thiocyanate to produce the antimicrobial and antifungal hypothiocyanate, from 0.37 ± 0.02 to 0.91 ± 0.05 mU/mL 45 s after stimulation. In comparison, oral citric acid stimulation induced an increase of myeloperoxidase activity, catalyzing the chloride oxidation to generate antimicrobial hypochloride in saliva, from 0.24 ± 0.04 to 0.70 ± 0.1 mU/mL as well as an increase of salivary levels of lysozyme, exhibiting antimicrobial activity on Gram-positive bacteria, from 6.0-10 to 100-150 μg/mL. Finally, microbial growth experiments clearly demonstrated for the first time that the increase of the salivary lysozyme abundance upon oral citric acid stimulation translates into an enhanced biological function, that is an almost complete growth inhibition of the two lysozyme-sensitive Gram-positive bacteria tested.
新鲜采集经柠檬酸(酸)、阿斯巴甜(甜)、异-α-酸(苦)、单谷氨酸钠(鲜味)、NaCl(咸)、6-姜辣素(辣)、羟基-α-山椒醇(刺痛)和羟基-β-山椒醇(麻木)刺激后的全唾液,进行唾液流量测量和 SDS-PAGE 分离,然后进行胰蛋白酶消化、纳升 HPLC-MS/MS 和无标记蛋白质定量,结果表明饮食化学感觉刺激物对唾液分泌和唾液蛋白质组组成具有刺激和时间依赖性影响。基因本体富集分析表明,刺激物诱导的唾液蛋白质组改变为口腔提供了有效的分子防御网络,例如,6-姜辣素增加了唾液乳过氧化物酶的活性,催化硫氰酸盐氧化生成具有抗菌和抗真菌作用的次碘酸盐,从刺激后 45 秒的 0.37±0.02 到 0.91±0.05 mU/mL。相比之下,口腔柠檬酸刺激诱导了髓过氧化物酶活性的增加,催化氯氧化生成唾液中的抗菌次氯酸盐,从 0.24±0.04 增加到 0.70±0.1 mU/mL,以及唾液中溶菌酶水平的增加,对革兰氏阳性菌具有抗菌活性,从 6.0-10 增加到 100-150 μg/mL。最后,微生物生长实验首次清楚地表明,口腔柠檬酸刺激后唾液溶菌酶丰度的增加转化为增强的生物学功能,即对测试的两种对溶菌酶敏感的革兰氏阳性菌的几乎完全生长抑制。