Suppr超能文献

CT 窗宽设置对亚实性结节实性成分大小测量的影响:评估肺腺癌病理恶性程度预测效能。

Effect of CT window settings on size measurements of the solid component in subsolid nodules: evaluation of prediction efficacy of the degree of pathological malignancy in lung adenocarcinoma.

机构信息

1 Department of Radiology, Changzheng Hospital, Second Military Medical University , Shanghai , China.

出版信息

Br J Radiol. 2018 Jul;91(1088):20180251. doi: 10.1259/bjr.20180251. Epub 2018 Jun 6.

Abstract

To investigate the predictive value of size measurements of the solid components in pulmonary subsolid nodules with different CT window settings and to evaluate the degree of pathological malignancy in lung adenocarcinoma.  Methods: The preoperative chest CT images and pathological data of 125 patients were retrospectively evaluated. The analysis included 127 surgically resected lung adenocarcinomas that manifested as subsolid nodules. All subsolid nodules were divided into two groups: 69 in group A, including 22 adenocarcinomas in situ (AIS) and 47 minimally invasive adenocarcinomas (MIA); 58 in group B that included invasive pulmonary adenocarcinomas (IPA). The size of the solid component in the pulmonary subsolid nodules were calculated in one dimensional, two dimensional and three dimensional views using lung and mediastinal windows that were recorded as 1D-SCLW, 2D-SCLW, 3D-SCLW, 1D-SCMW, 2D-SCMW and 3D-SCMW, respectively. Furthermore, the volume of solid component with a threshold of -300HU was measured using lung window (3D-SCT). All the quantitative features were evaluated by the Mann-Whitney U test. Multivariate analysis was used to identify the significant predictor of the degree of pathological malignancy.  Results: The 1D-SCLW, 2D-SCLW, 3D-SCLW, 1D-SCMW, 2D-SCMW, 3D-SCMW and 3D-SCT views of group B were significantly larger than those of group A (p < 0.001). The multivariate logistic regression analysis indicated that 3D-SCT (OR = 1.018, 95%CI: 1.005 ~ 1.03, p <0.05=was the independent predictive factor. The larger SCT was significantly associated with IPAs.  Conclusion: 3D-SCT of subsolid nodules during preoperative CT can be used to predict the degree of pathological malignancy in lung adenocarcinoma, which may provide a more objective and convenient selection criterion for clinical application.  Advances in knowledge:  Applying threshold of -300 HU with lung window setting would be better than other window setting for the evaluation of solid component in subsolid nodules. Computer-aided volumetry of the solid component in subsolid nodules can more accurately predict the degree of pathological malignancy than the other dimensional measurements.

摘要

目的

探讨不同 CT 窗位下肺亚实性结节实性成分大小测量的预测价值,并评估肺腺癌的病理恶性程度。方法:回顾性分析 125 例患者的术前胸部 CT 图像和病理资料。分析包括 127 例手术切除的肺腺癌,表现为亚实性结节。所有亚实性结节分为两组:A 组 69 例,包括 22 例原位腺癌(AIS)和 47 例微浸润腺癌(MIA);B 组 58 例包括浸润性肺腺癌(IPA)。使用肺窗和纵隔窗记录的一维、二维和三维测量肺亚实性结节实性成分的大小,分别记录为 1D-SCLW、2D-SCLW、3D-SCLW、1D-SCMW、2D-SCMW 和 3D-SCMW。此外,使用肺窗(3D-SCT)测量实性成分的阈值为-300HU 的体积。所有定量特征均采用 Mann-Whitney U 检验进行评估。采用多变量分析确定病理恶性程度的显著预测因子。结果:B 组的 1D-SCLW、2D-SCLW、3D-SCLW、1D-SCMW、2D-SCMW、3D-SCMW 和 3D-SCT 视图明显大于 A 组(p<0.001)。多变量 logistic 回归分析表明,3D-SCT(OR=1.018,95%CI:1.005~1.03,p<0.05)是独立的预测因子。较大的 SCT 与 IPA 显著相关。结论:术前 CT 中肺亚实性结节的 3D-SCT 可用于预测肺腺癌的病理恶性程度,可为临床应用提供更客观、更方便的选择标准。知识进展:应用肺窗设置的-300HU 阈值进行评估优于其他窗位。计算机辅助测量亚实性结节的实性成分体积比其他维度测量更能准确预测病理恶性程度。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验