Suppr超能文献

林可酰胺类抗生素的生物合成:与降解和解毒途径相关的反应起着建设性的作用。

Biosynthesis of Lincosamide Antibiotics: Reactions Associated with Degradation and Detoxification Pathways Play a Constructive Role.

机构信息

State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.

Huzhou Center of Bio-Synthetic Innovation , 1366 Hongfeng Road , Huzhou 313000 , China.

出版信息

Acc Chem Res. 2018 Jun 19;51(6):1496-1506. doi: 10.1021/acs.accounts.8b00135. Epub 2018 May 24.

Abstract

Natural products typically are small molecules produced by living organisms. These products possess a wide variety of biological activities and thus have historically played a critical role in medicinal chemistry and chemical biology either as chemotherapeutic agents or as useful tools. Natural products are not synthesized for use by human beings; rather, living organisms produce them in response to various biochemical processes and environmental concerns, both internal and external. These processes/concerns are often dynamic and thus motivate the diversification, optimization, and selection of small molecules in line with changes in biological function. Consequently, the interactions between living organisms and their environments serve as an engine that drives coevolution of natural products and their biological functions and ultimately programs the constant theme of small-molecule development in nature based on biosynthesis generality and specificity. Following this theme, we herein review the biosynthesis of lincosamide antibiotics and dissect the process through which nature creates an unusual eight-carbon aminosugar (lincosamide) and then functionalizes this common high-carbon chain-containing sugar core with diverse l-proline derivatives and sulfur appendages to form individual members, including the clinically useful anti-infective agent lincomycin A and its naturally occurring analogues celesticetin and Bu-2545. The biosynthesis of lincosamide antibiotics is unique in that it results from an intersection of anabolic and catabolic chemistry. Many reactions that are usually involved in degradation and detoxification play a constructive role in biosynthetic processes. Formation of the trans-4-propyl-l-proline residue in lincomycin A biosynthesis requires an oxidation-associated degradation-like pathway composed of heme peroxidase-catalyzed ortho-hydroxylation and non-heme 2,3-dioxygenase-catalyzed extradiol cleavage for l-tyrosine processing prior to the building-up process. Mycothiol (MSH) and ergothioneine (EGT), two small-molecule thiols that are known for their redox-relevant roles in protection against various endogenous and exogenous stresses, function through two unusual S-glycosylations to mediate an eight-carbon aminosugar transfer, activation, and modification during the molecular assembly and tailoring processes in lincosamide antibiotic biosynthesis. Related intermediates include an MSH S-conjugate, mercapturic acid, and a thiomethyl product, which are reminiscent of intermediates found in thiol-mediated detoxification metabolism. In these biosynthetic pathways, "old" protein folds can result in "new" enzymatic activity, such as the DinB-2 fold protein for thiol exchange between EGT and MSH, the γ-glutamyltranspeptidase homologue for C-C bond cleavage, and the pyridoxal-5'-phosphate-dependent enzyme for diverse S-functionalization, generating interest in how nature develops remarkably diverse biochemical functions using a limited range of protein scaffolds. These findings highlight what we can learn from natural product biosynthesis, the recognition of its generality and specificity, and the natural theme of the development of bioactive small molecules, which enables the diversification process to advance and expand small-molecule functions.

摘要

天然产物通常是由生物体产生的小分子。这些产物具有广泛的生物活性,因此在医学化学和化学生物学中一直发挥着至关重要的作用,无论是作为化疗药物还是作为有用的工具。天然产物不是为人类使用而合成的;相反,生物体在应对各种生化过程和内外环境问题时会产生这些产物。这些过程/问题通常是动态的,因此促使小分子根据生物功能的变化进行多样化、优化和选择。因此,生物与环境之间的相互作用是推动天然产物及其生物功能协同进化的引擎,并最终根据生物合成的普遍性和特异性来规划自然界中小分子发展的不变主题。基于此主题,我们在此综述了林可酰胺抗生素的生物合成,并剖析了自然界创造不寻常的八碳氨基糖(林可酰胺)的过程,然后用各种 L-脯氨酸衍生物和硫侧链对这种常见的高碳链含糖核心进行功能化,形成单个成员,包括临床上有用的抗感染药物林可霉素 A 及其天然类似物 celesticetin 和 Bu-2545。林可酰胺抗生素的生物合成是独特的,因为它是合成代谢和分解代谢化学的交叉产物。许多通常涉及降解和解毒的反应在生物合成过程中发挥了建设性作用。林可霉素 A 生物合成中反式-4-丙基-L-脯氨酸残基的形成需要一个氧化相关的降解样途径,该途径由血红素过氧化物酶催化的邻位羟化和非血红素 2,3-双加氧酶催化的外二醇裂解组成,用于 L-酪氨酸处理,然后进行构建过程。麦角硫因(MSH)和麦硫因(EGT)是两种小分子硫醇,已知它们在保护免受各种内源性和外源性应激方面具有氧化还原相关作用,它们通过两种不寻常的 S-糖基化作用在林可酰胺抗生素生物合成的分子组装和修饰过程中发挥作用,介导八碳氨基糖的转移、激活和修饰。相关的中间产物包括 MSH S-缀合物、硫尿酸和硫甲基产物,这让人联想到硫醇介导的解毒代谢中发现的中间产物。在这些生物合成途径中,“旧”蛋白折叠可以产生“新”的酶活性,例如 EGT 和 MSH 之间的硫醇交换的 DinB-2 折叠蛋白、C-C 键裂解的 γ-谷氨酰转肽酶同源物以及用于各种 S-功能化的吡哆醛-5'-磷酸依赖性酶,这引发了人们对自然界如何利用有限的蛋白支架开发出极为多样的生化功能的兴趣。这些发现强调了我们可以从天然产物生物合成中学习到什么,认识到其普遍性和特异性,以及生物活性小分子发展的自然主题,这使多样化过程得以推进并扩展小分子功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验