State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.
Nature. 2015 Feb 5;518(7537):115-9. doi: 10.1038/nature14137. Epub 2015 Jan 14.
Low-molecular-mass thiols in organisms are well known for their redox-relevant role in protection against various endogenous and exogenous stresses. In eukaryotes and Gram-negative bacteria, the primary thiol is glutathione (GSH), a cysteinyl-containing tripeptide. In contrast, mycothiol (MSH), a cysteinyl pseudo-disaccharide, is dominant in Gram-positive actinobacteria, including antibiotic-producing actinomycetes and pathogenic mycobacteria. MSH is equivalent to GSH, either as a cofactor or as a substrate, in numerous biochemical processes, most of which have not been characterized, largely due to the dearth of information concerning MSH-dependent proteins. Actinomycetes are able to produce another thiol, ergothioneine (EGT), a histidine betaine derivative that is widely assimilated by plants and animals for variable physiological activities. The involvement of EGT in enzymatic reactions, however, lacks any precedent. Here we report that the unprecedented coupling of two bacterial thiols, MSH and EGT, has a constructive role in the biosynthesis of lincomycin A, a sulfur-containing lincosamide (C8 sugar) antibiotic that has been widely used for half a century to treat Gram-positive bacterial infections. EGT acts as a carrier to template the molecular assembly, and MSH is the sulfur donor for lincomycin maturation after thiol exchange. These thiols function through two unusual S-glycosylations that program lincosamide transfer, activation and modification, providing the first paradigm for EGT-associated biochemical processes and for the poorly understood MSH-dependent biotransformations, a newly described model that is potentially common in the incorporation of sulfur, an element essential for life and ubiquitous in living systems.
生物体中的低分子量巯基以其在抵御各种内源性和外源性应激方面的氧化还原相关作用而闻名。在真核生物和革兰氏阴性细菌中,主要的巯基是谷胱甘肽(GSH),一种含半胱氨酸的三肽。相比之下,分枝杆菌中的分枝菌酸(MSH),一种含半胱氨酸的假二糖,在包括抗生素产生放线菌和致病性分枝杆菌在内的革兰氏阳性放线菌中占主导地位。MSH 在许多生化过程中与 GSH 等效,无论是作为辅助因子还是作为底物,其中大部分尚未得到表征,这主要是由于缺乏关于 MSH 依赖性蛋白的信息。放线菌能够产生另一种巯基,即麦角硫因(EGT),一种组氨酸甜菜碱衍生物,被植物和动物广泛同化,用于各种生理活动。然而,EGT 参与酶反应缺乏任何先例。在这里,我们报告了两种细菌巯基,MSH 和 EGT 的前所未有的偶联,在林可霉素 A 的生物合成中具有建设性作用,林可霉素 A 是一种含硫的林可酰胺(C8 糖)抗生素,已经广泛使用了半个世纪,用于治疗革兰氏阳性细菌感染。EGT 作为模板分子组装的载体,MSH 是林可霉素成熟后的硫供体,进行巯基交换。这些巯基通过两种不寻常的 S-糖基化发挥作用,这些糖基化程序控制林可酰胺的转移、激活和修饰,为 EGT 相关生化过程和了解甚少的 MSH 依赖性生物转化提供了第一个范例,这是一个新描述的模型,可能在硫的掺入中很常见,硫是生命所必需的元素,在生命系统中无处不在。