Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
University of Basel, Basel, Switzerland.
Nature. 2018 May;557(7707):739-743. doi: 10.1038/s41586-018-0153-8. Epub 2018 May 23.
De novo mutations in ADNP, which encodes activity-dependent neuroprotective protein (ADNP), have recently been found to underlie Helsmoortel-Van der Aa syndrome, a complex neurological developmental disorder that also affects several other organ functions . ADNP is a putative transcription factor that is essential for embryonic development . However, its precise roles in transcriptional regulation and development are not understood. Here we show that ADNP interacts with the chromatin remodeller CHD4 and the chromatin architectural protein HP1 to form a stable complex, which we refer to as ChAHP. Besides mediating complex assembly, ADNP recognizes DNA motifs that specify binding of ChAHP to euchromatin. Genetic ablation of ChAHP components in mouse embryonic stem cells results in spontaneous differentiation concomitant with premature activation of lineage-specific genes and in a failure to differentiate towards the neuronal lineage. Molecularly, ChAHP-mediated repression is fundamentally different from canonical HP1-mediated silencing: HP1 proteins, in conjunction with histone H3 lysine 9 trimethylation (H3K9me3), are thought to assemble broad heterochromatin domains that are refractory to transcription. ChAHP-mediated repression, however, acts in a locally restricted manner by establishing inaccessible chromatin around its DNA-binding sites and does not depend on H3K9me3-modified nucleosomes. Together, our results reveal that ADNP, via the recruitment of HP1 and CHD4, regulates the expression of genes that are crucial for maintaining distinct cellular states and assures accurate cell fate decisions upon external cues. Such a general role of ChAHP in governing cell fate plasticity may explain why ADNP mutations affect several organs and body functions and contribute to cancer progression. Notably, we found that the integrity of the ChAHP complex is disrupted by nonsense mutations identified in patients with Helsmoortel-Van der Aa syndrome, and this could be rescued by aminoglycosides that suppress translation termination . Therefore, patients might benefit from therapeutic agents that are being developed to promote ribosomal read-through of premature stop codons.
ADNP 基因中的新生突变最近被发现是赫尔姆斯霍尔特-范德阿综合征(Helsmoortel-Van der Aa syndrome)的致病原因,这种疾病是一种复杂的神经发育障碍,也会影响其他几个器官的功能。ADNP 编码活性依赖性神经保护蛋白(activity-dependent neuroprotective protein,ADNP),是一种假定的转录因子,对胚胎发育至关重要。然而,其在转录调控和发育中的精确作用尚不清楚。在这里,我们发现 ADNP 与染色质重塑酶 CHD4 和染色质结构蛋白 HP1 相互作用,形成一个稳定的复合物,我们称之为 ChAHP。除了介导复合物组装外,ADNP 还识别特定于 euchromatin 的 DNA 基序,使 ChAHP 与之结合。在小鼠胚胎干细胞中遗传敲除 ChAHP 组件会导致自发分化,伴随着谱系特异性基因的过早激活,以及向神经元谱系分化的失败。从分子水平上讲,ChAHP 介导的抑制与经典的 HP1 介导的沉默有根本的不同:HP1 蛋白与组蛋白 H3 赖氨酸 9 三甲基化(H3K9me3)一起,被认为组装成广泛的异染色质域,这些域对转录是不可接近的。然而,ChAHP 介导的抑制作用是通过在其 DNA 结合位点周围建立不可接近的染色质来局部限制的,并且不依赖于 H3K9me3 修饰的核小体。总之,我们的结果表明,ADNP 通过招募 HP1 和 CHD4,调节维持不同细胞状态的基因表达,并在外部信号作用下确保准确的细胞命运决定。ChAHP 在调控细胞命运可塑性方面的这种普遍作用可能解释了为什么 ADNP 突变会影响多个器官和身体功能,并促进癌症进展。值得注意的是,我们发现赫尔姆斯霍尔特-范德阿综合征患者中发现的无意义突变会破坏 ChAHP 复合物的完整性,而这种破坏可以通过抑制翻译终止的氨基糖苷类药物来挽救。因此,患者可能受益于正在开发的促进核糖体通读过早终止密码子的治疗药物。