Suppr超能文献

宏基因组来源的L-半胱氨酸亚磺酸盐脱羧酶的分子表征与定向进化

Molecular Characterization and Directed Evolution of a Metagenome-Derived l-Cysteine Sulfinate Decarboxylase.

作者信息

Deng Jie, Wu Qiaofen, Gao Hua, Ou Qian, Wu Bo, Yan Bing, Jiang Chengjian

机构信息

Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 92 Changqing Rd., Beihai, Guangxi, PR China.

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, PR China.

出版信息

Food Technol Biotechnol. 2018 Mar;56(1):117-123. doi: 10.17113/ftb.56.01.18.5415.

Abstract

l-Cysteine sulfinate decarboxylase (CSD, EC 4.1.1.29), the rate-limiting enzyme in taurine synthesis pathway, catalyzes l-cysteine sulfinic acid to form hypotaurine. Identification of the novel CSD that could improve the biosynthetic efficiency of taurine is important. An unexplored decarboxylase gene named was identified in a previous work through sequence-based screening of uncultured soil microorganisms. Random mutagenesis through sequential error-prone polymerase chain reaction was used in Undec1A. A mutant Undec1A-1180, which was obtained from mutagenesis library, had 5.62-fold higher specific activity than Undec1A at 35 °C and pH=7.0. Molecular docking results indicated that amino acid residues Ala235, Val237, Asp239, Ile267, Ala268, and Lys298 in the Undec1A-1180 protein helped recognize and catalyze the substrate molecules of l-cysteine sulfinic acid. These results could serve as a basis for elucidating the characteristics of the Undec1A-1180. Directed evolution technology is a convenient way to improve the biotechnological applications of metagenome-derived genes.

摘要

L-半胱氨酸亚磺酸脱羧酶(CSD,EC 4.1.1.29)是牛磺酸合成途径中的限速酶,催化L-半胱氨酸亚磺酸形成亚牛磺酸。鉴定能够提高牛磺酸生物合成效率的新型CSD具有重要意义。在先前的一项工作中,通过对未培养土壤微生物进行基于序列的筛选,鉴定出一个未被探索的脱羧酶基因。在Undec1A中使用了通过易错聚合酶链反应进行的随机诱变。从诱变文库中获得的突变体Undec1A-1180在35℃和pH = 7.0时比Undec1A具有高5.62倍的比活性。分子对接结果表明,Undec1A-1180蛋白中的氨基酸残基Ala235、Val237、Asp239、Ile267、Ala268和Lys298有助于识别和催化L-半胱氨酸亚磺酸的底物分子。这些结果可为阐明Undec1A-1180的特性提供依据。定向进化技术是提高宏基因组来源基因生物技术应用的便捷方法。

相似文献

1
Molecular Characterization and Directed Evolution of a Metagenome-Derived l-Cysteine Sulfinate Decarboxylase.
Food Technol Biotechnol. 2018 Mar;56(1):117-123. doi: 10.17113/ftb.56.01.18.5415.
2
Specificity of cysteine sulfinate decarboxylase (CSD) for sulfur-containing amino-acids.
Neurochem Int. 1996 Apr;28(4):363-71. doi: 10.1016/0197-0186(95)00109-3.
3
Characterization of a metagenome-derived protease from contaminated agricultural soil microorganisms and its random mutagenesis.
Folia Microbiol (Praha). 2017 Nov;62(6):499-508. doi: 10.1007/s12223-017-0522-y. Epub 2017 Apr 5.
5
Expression and localization of cysteine sulfinate decarboxylase in major salivary glands of male mice.
Arch Oral Biol. 2015 Apr;60(4):615-21. doi: 10.1016/j.archoralbio.2014.12.015. Epub 2014 Dec 31.
6
Identification and molecular characterization of a metagenome-derived L-lysine decarboxylase gene from subtropical soil microorganisms.
PLoS One. 2017 Sep 20;12(9):e0185060. doi: 10.1371/journal.pone.0185060. eCollection 2017.
7
Microassay methods for taurine and cysteine sulfinate decarboxylase activity.
Jpn J Pharmacol. 1977 Dec;27(6):881-8. doi: 10.1254/jjp.27.881.
9
A Novel, Easy Assay Method for Human Cysteine Sulfinic Acid Decarboxylase.
Life (Basel). 2021 May 14;11(5):438. doi: 10.3390/life11050438.
10
Expression of cysteine sulfinate decarboxylase (CSD) in male reproductive organs of mice.
Histochem Cell Biol. 2006 Jun;125(6):607-13. doi: 10.1007/s00418-005-0095-8. Epub 2005 Oct 27.

本文引用的文献

1
Identification and molecular characterization of a metagenome-derived L-lysine decarboxylase gene from subtropical soil microorganisms.
PLoS One. 2017 Sep 20;12(9):e0185060. doi: 10.1371/journal.pone.0185060. eCollection 2017.
2
Characterization of a metagenome-derived protease from contaminated agricultural soil microorganisms and its random mutagenesis.
Folia Microbiol (Praha). 2017 Nov;62(6):499-508. doi: 10.1007/s12223-017-0522-y. Epub 2017 Apr 5.
3
Molprobity's ultimate rotamer-library distributions for model validation.
Proteins. 2016 Sep;84(9):1177-89. doi: 10.1002/prot.25039. Epub 2016 Jun 23.
4
Recovering complete and draft population genomes from metagenome datasets.
Microbiome. 2016 Mar 8;4:8. doi: 10.1186/s40168-016-0154-5.
6
Physiological and evolutionary potential of microorganisms from the Canterbury Basin subseafloor, a metagenomic approach.
FEMS Microbiol Ecol. 2015 May;91(5). doi: 10.1093/femsec/fiv029. Epub 2015 Mar 19.
8
Physiological role of taurine--from organism to organelle.
Acta Physiol (Oxf). 2015 Jan;213(1):191-212. doi: 10.1111/apha.12365. Epub 2014 Sep 12.
9
10
Construction and analysis of randomized protein-encoding libraries using error-prone PCR.
Methods Mol Biol. 2013;996:251-67. doi: 10.1007/978-1-62703-354-1_15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验