Biosciences Division (BIO), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA.
Department of Surgery, University of Chicago, 5841 South Maryland Avenue, MC 5029, Chicago, IL, 60637, USA.
Microbiome. 2016 Mar 8;4:8. doi: 10.1186/s40168-016-0154-5.
Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.
将宏基因组序列数据组装成微生物基因组对于阐明难以培养的微生物的功能潜力,从而提高我们对微生物生态和代谢的理解具有根本价值。在这里,我们综合了现有的将宏基因组序列聚类成种水平组的方法,并强调了遗传多样性、测序深度和覆盖度如何影响聚类成功。尽管在应用于深度测序的复杂宏基因组(例如土壤)时需要计算成本,但多个数据集的覆盖度共变模式显著提高了聚类过程的效率。我们还讨论并比较了当前的基因组验证方法,并揭示了这些方法如何解决嵌合体基因组聚类的问题,即来自多个物种的序列。最后,我们探讨了种群基因组组装如何用于揭示生物地理趋势,并描述原位功能约束对基因组进化的影响。
Microbiome. 2016-3-8
BMC Bioinformatics. 2017-12-28
BMC Genomics. 2017-11-28
BMC Bioinformatics. 2020-7-28
Bioinformatics. 2016-2-15
Syst Appl Microbiol. 2018-11-15
BMC Bioinformatics. 2017-5-2
IEEE/ACM Trans Comput Biol Bioinform. 2016-6-7
Gigascience. 2025-1-6
Environ Microbiol. 2025-6
Brief Bioinform. 2024-7-25
mSphere. 2024-8-28
Bioinformatics. 2016-2-15
Nat Biotechnol. 2015-10
Bioinformatics. 2015-6-9
Environ Microbiol Rep. 2015-12