Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia.
School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia.
Ecol Lett. 2018 Aug;21(8):1200-1210. doi: 10.1111/ele.13089. Epub 2018 May 25.
The analysis of functional diversity (FD) has gained increasing importance due to its generality and utility in ecology. In particular, patterns in the spatial distribution and temporal change of FD are being used to predict locations and functional groups that are immediately vulnerable to global changes. A major impediment to the accurate measurement of FD is the pervasiveness of missing data in trait datasets. While such prevalent data gaps can engender misleading inferences in FD analyses, we currently lack any practical guide to handle missing data in trait datasets. Here, we identify significant mismatches between true FD and values derived from datasets that contain missing data. We demonstrate that imputing missing data with a phylogeny-informed approach reduces the risk of misinterpretation of FD patterns, and provides baseline information against which central questions in ecology can be evaluated.
由于功能多样性(FD)在生态学中的通用性和实用性,其分析得到了越来越多的重视。特别是,FD 在空间分布和时间变化模式正被用于预测那些对全球变化敏感的位置和功能组。在准确测量 FD 方面的一个主要障碍是特征数据集普遍存在缺失数据。尽管在 FD 分析中这种普遍的数据空白会产生误导性的推断,但我们目前缺乏任何实用的指南来处理特征数据集的缺失数据。在这里,我们发现真实 FD 与包含缺失数据的数据集所衍生的值之间存在显著差异。我们证明,通过使用基于系统发育的方法来填补缺失数据可以降低对 FD 模式产生误解的风险,并提供了基线信息,可据此评估生态学中的核心问题。