Suppr超能文献

基于彭曼-蒙特斯-鲁宁算法的MODIS驱动的中国西南喀斯特地区区域蒸散量估算

[MODIS-driven estimation of regional evapotranspiration in Karst area of Southwest China based on the Penman-Monteith-Leuning algorithm.].

作者信息

Zhong Hao Zhe, Xu Xian Li, Zhang Rong Fei, Liu Mei Xian

机构信息

Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Ying Yong Sheng Tai Xue Bao. 2018 May;29(5):1617-1625. doi: 10.13287/j.1001-9332.201805.014.

Abstract

Karst area in southwestern China is characterized with complex topography, low soil water capacity, and fragile ecosystem. Accurate estimation of regional evapotranspiration is essential for ecological restoration and water resources management in southwestern China. Based on observed evapotranspiration and meteorological data, this study aimed to estimate spatial upscale evapotranspiration using the MOD15A2 LAI and Penman-Monteith-Leuning (PML) model, within which the stomatal conductance and soil wetness index were optimized by the least-square method. The results showed that the modeled ET well fitted with the observations, with the determination coefficient, Nash efficiency coefficient and RMSE being 0.85, 0.75 and 1.56 mm·d, respectively. The ET exhibited clear seasonality and reached to its maximum in summer, coinciding with vegetation phenology. The annual ET ranged from 534 to 1035 mm·a, with strong spatial heterogeneity which highly related to the precipitation. Evapotranspiration may be affected by precipitation as well as land use types.

摘要

中国西南部岩溶地区地形复杂,土壤持水能力低,生态系统脆弱。准确估算区域蒸散量对于中国西南部的生态恢复和水资源管理至关重要。基于观测的蒸散量和气象数据,本研究旨在利用MOD15A2叶面积指数和彭曼-蒙特斯-勒宁(PML)模型估算空间尺度上推的蒸散量,其中气孔导度和土壤湿度指数通过最小二乘法进行了优化。结果表明,模拟的蒸散量与观测值拟合良好,决定系数、纳什效率系数和均方根误差分别为0.85、0.75和1.56mm·d。蒸散量呈现明显的季节性,在夏季达到最大值,与植被物候期一致。年蒸散量范围为534至1035mm·a,具有很强的空间异质性,与降水量高度相关。蒸散量可能受降水以及土地利用类型的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验