Suppr超能文献

在弱磁场中,革兰氏阴性棒状菌在 1D 纳米波纹玻璃图案上的黏附。

Adhesion of gram-negative rod-shaped bacteria on 1D nano-ripple glass pattern in weak magnetic fields.

机构信息

Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas.

Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, Texas.

出版信息

Microbiologyopen. 2019 Feb;8(2):e00640. doi: 10.1002/mbo3.640. Epub 2018 May 24.

Abstract

This research project has major applications in the healthcare and biomedical industries. Bacteria reside in human bodies and play an integral role in the mechanism of life. However, their excessive growth or the invasion of similar agents can be dangerous and may cause fatal or incurable diseases. On the other hand, increased exposure to electromagnetic radiation and its impact on health and safety is a common concern to medical science. Some nanostructure materials have interesting properties regarding facilitating or impeding cell growth. An understanding of these phenomena can be utilized to establish the optimum benefit of these structures in healthcare and medical research. We focus on the commonly found rod-shaped, gram-negative bacteria and their orientation and community development on the cellular level in the presence of weak magnetic fields on one dimensional nano-ripple glass patterns to investigate the impact of nanostructures on the growth pattern of bacteria. The change in bacterial behavior on nanostructures and the impact of magnetic fields will open up new venues in the utilization of nanostructures. It is noticed that bacterial entrapment in nano-grooves leads to the growth of larger colonies on the nanostructures, whereas magnetic fields reduce the size of colonies and suppress their growth.

摘要

本研究项目在医疗保健和生物医学行业有重要应用。细菌存在于人体中,在生命机制中发挥着重要作用。然而,它们的过度生长或类似物质的入侵可能是危险的,并可能导致致命或无法治愈的疾病。另一方面,电磁辐射的增加及其对健康和安全的影响是医学科学共同关注的问题。一些纳米结构材料在促进或阻碍细胞生长方面具有有趣的特性。了解这些现象可以用于确定这些结构在医疗保健和医学研究中的最佳效益。我们专注于常见的杆状、革兰氏阴性细菌,以及在一维纳米波纹玻璃图案的弱磁场存在下,它们在细胞水平上的取向和群落发展,以研究纳米结构对细菌生长模式的影响。细菌在纳米结构上的行为变化和磁场的影响将为纳米结构的利用开辟新的途径。人们注意到,细菌在纳米凹槽中的捕获导致在纳米结构上形成更大的菌落,而磁场则会减小菌落的大小并抑制其生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/439d/6391264/8c433da3cb83/MBO3-8-e00640-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验